Устойчивость энергосистемы. Общие сведения. Способы повышения устойчивости. Динамическая устойчивость энергосистемы

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ

электроэнергетической системы - способность электроэнергетической системы восстанавливать исходное состояние (режим) после малых его возмущений. Нарушение С. у. может возникать при передаче больших мощностей через ЛЭП (как правило, протяжённые), при снижении напряжения в узлах нагрузки вследствие дефицита реактивной мощности, при работе генераторов электростанций в режиме недовозбуждения. Осн. меры обеспечения С. у.: увеличение номин. напряжения ЛЭП и снижение их индуктивного сопротивления; автоматическое регулирование возбуждения крупных синхронных машин, применение синхронных компенсаторов, синхронных электродвигателей и статич. компенсаторов реактивной мощности в узлах нагрузки. С. у. может быть повышена также при использовании в энергосистемах генераторов с регулированием возбуждения в продольной и поперечной обмотках ротора.


Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое "СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ" в других словарях:

    Характеристика устойчивости летательного аппарата, определяющая его тенденцию к возвращению без вмешательства лётчика в исходное положение равновесия под действием аэродинамического момента (см. Аэродинамические силы и моменты), вызываемого… … Энциклопедия техники

    статическая устойчивость - электрической системы; статическая устойчивость Способность электрической системы возвращаться к исходному режиму (или весьма близкому к нему) после малых возмущений режима …

    статическая устойчивость - statinis stabilumas statusas T sritis automatika atitikmenys: angl. static stability; steady state stability vok. statische Stabilität, f rus. статическая устойчивость, f pranc. stabilité statique, f … Automatikos terminų žodynas

    статическая устойчивость - statinis stabilumas statusas T sritis fizika atitikmenys: angl. static stability vok. statische Stabilität, f rus. статическая устойчивость, f pranc. stabilité statique, f … Fizikos terminų žodynas

    статическая устойчивость Энциклопедия «Авиация»

    статическая устойчивость - статическая устойчивость — характеристика устойчивости летательного аппарата, определяющая его тенденцию к возвращению без вмешательства лётчика в исходное положение равновесия под действием аэродинамического момента (см. Аэродинамические… … Энциклопедия «Авиация»

    статическая устойчивость электрической системы - статическая устойчивость электрической системы; статическая устойчивость Способность электрической системы возвращаться к исходному режиму (или весьма близкому к нему) после малых возмущений режима … Политехнический терминологический толковый словарь

    статическая устойчивость ТКК - статическая устойчивость ТКК: Угол наклона испытательной плоскости, при котором происходит подъем какого либо колеса ТКК над этой плоскостью. Источник: ГОСТ Р 52286 2004: Кресла каталки транспортные реабилитационные. Основные параметры.… …

    Статическая устойчивость энергосистемы - 48. Статическая устойчивость энергосистемы Способность энергосистемы возвращаться к установившемуся режиму после малых его возмущений. Примечание. Под малым возмущением режима энергосистемы понимают такое, при котором изменения параметров… … Словарь-справочник терминов нормативно-технической документации

    English: Energetic system static (resistance) stability Способность энергосистемы возвращаться к установившемуся режиму после малых его возмущений (по ГОСТ 21027 75) Источник: Термины и определения в электроэнергетике. Справочник … Строительный словарь

Книги

  • , В. Пышнов. Аэродинамика самолета. Часть вторая. Равновесие в прямолинейном полете и статическая устойчивость Воспроизведено в оригинальной авторской орфографии издания 1935 года (издательство`ОНТИ…
  • Аэродинамика самолета. Часть вторая. Равновесие в прямолинейном полете и статическая устойчивость , Пышнов В.С. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Аэродинамика самолета. Часть вторая. Равновесие в прямолинейном полете и статическая устойчивость…

Устойчивость энергосистемы - это способность ее возвращаться в исходное состояние при малых или значительных возму-щениях. По аналогии с механической системой установившийся режим энергосистемы можно трактовать как равновесное поло-жение ее.

Параллельная работа генераторов электрических станций, вхо-дящих в энергосистему, отличается от работы генераторов на од-ной станции наличием линий электропередачи, связывающих эти станции. Сопротивления линий электропередачи уменьшают снихронизирующую мощность генераторов и затрудняют их параллель-ную работу. Кроме того, отклонения от нормального режима рабо-ты системы, которые происходят при отключениях, коротких за-мыканиях, внезапном сбросе или набросе нагрузки, также могут привести к нарушению устойчивости, что является одной из наи-более тяжелых: аварий, приводящей к перерыву электроснабжения потребителей Поэтому изучение проблемы устойчивости очень важно, особенно применительно к линиям электропередачи пере-менным током. Различают два вида устойчивости: статическую и динамическую.

Статической устойчивостью называют способность системы са-мостоятельно восстановить исходный режим при малых и медлен-но происходящих возмущениях, например при постепенном незна-чительном увеличении или уменьшении нагрузки.

Динамическая устойчивость энергосистемы характеризует способность систе-мы сохранять синхронизм после внезапных и резких изменений параметров режима или при авариях в системе (коротких замыка-ниях, отключений часта генераторов, линий или трансформаторов). После таких внезапных нарушений нормальной работы в системе возникает переходный процесс, по окончании которого вновь дол-жен наступить установившийся послеаварийный режим работы.

Способы повышения устойчивости

Основным способом повышения устойчивости является увели-чение предела передаваемой мощвости. Этого можно достичь повышением э.д.с. генераторов, на-пряжения на шинах нагрузки или уменьшением индуктивного со-противления линии. Основными средствами повышения устойчи вости являются следующие:

Применение быстродействующих автоматических регулято-ров напряжения, увеличивающих э. д. с. генераторов при возрастании нагрузки. Для повышения динамической устойчивости при к. з. особенно большое значение имеет форсировка возбуждения, при которой контакты специального реле шунтируют реостаты возбуждения; в результате в обмотку возбудителя подается наи-больший возможный ток («потолочное» возбуждение). В совре-менных генераторах «потолочный» ток возбуждения составляет 1,8-2.0 его номинального значения;

Повышение напряжений действующих линий, например со 110 на 150 или иа 220 кВ;

Уменьшение индуктивного сопротивления линий, достигаемое расщеплением проводов мощных линий на два или три, или при-менением продольной емкостной компенсации с последовательным включением в линию батареи конденсаторов;

Применение быстродействующих выключателей, защит и авто-матического повторного включения линий.

Состояние системы в любой момент времени или на некотором интервале времени, называется режимом системы. Режим характеризуется показателями, количественно определяющими условия работы системы. Эти показатели называются параметрами режима . К ним относятся значения мощности, напряжения, частоты, углов сдвига векторов ЭДС, напряжений, токов.

Режим электрической системы может быть установившимся или переходным .

В любых переходных процессах происходят закономерные последовательные изменения параметров режима, вызванные какими-либо причинами. Эти причины называются возмущающими воздействиями . Они создают начальные отклонения параметров режима – возмущения режима .

В нормальных условиях эксплуатации всегда имеют место малые изменения нагрузки. Поэтому строго неизменного режима в системе не существует и, говоря об установившемся режиме, всегда имеют в виду режим малых возмущений.

Малые возмущения не должны вызывать нарушения устойчивости системы, то есть не должны приводить к прогрессивно возрастающему изменению параметров исходного режима системы.

Статическая устойчивость – это способность системы восстанавливать исходный (или близкий к исходному) режим после малого его возмущения.

В определенных условиях установившийся режим может быть неустойчивым. Это происходит при работе системы в предельных режимах (слишком большая или малая передаваемая мощность, снижение напряжения в узлах нагрузки и т.д.). В этих случаях малые возмущения приводят к прогрессивно возрастающему измене­нию параметров режима, которые вначале происходят очень медленно, проявляясь в виде самопроизвольного изменения, называемого иногда сползанием (текучестью) параметров нормального режима системы.

При исследовании статической устойчивости заранее предполагается, что установить абсолютные значения изменений параметров режима при их отклонениях от установившихся значений невозможно. Причина и место их возникновения не фиксированы. Это некие свободные возмущения , имеющие вероятностный характер.

Задача исследования статической устойчивости сводится, следовательно, только к определению характера изменения параметров режима без определения величины возмущений. При этом анализ ограничивается малой областью e, заданной в области установившегося значения параметров.

Статическую устойчивость электрической системы можно оценивать разными способами:

1. С помощью практических критериев, основанных на упрощающих допу­щениях. При этом ответ получается только в форме «да – нет», «уйдет – не уйдет» режим из начального его состояния при малом возмущении системы.

2. С помощью метода малых колебаний, основанного на исследовании уравнений движения. В этом случае физическая природа происходящих явлений выясняется более полно: устанавливается не только устойчивость режима, но и характер движения (апериодическое или колебательное, нарастающее или затухающее).



Аварийные режимы в электрической системе возникают при КЗ, аварийных отключениях нагруженных агрегатов или линий и т.п. Под действием больших возмущений возникают резкие изменения режима.

Большие возмущения могут возникать и в нормальных режимах: отключении и включении генераторов, линий, пуске мощных двигателей и т.д.

По отношению к большим возмущениям вводится понятие динамической устойчивости.

Динамическая устойчивость – это способность системы восстанавливать исходное состояние после большого возмущения.

Введенные выше понятия “ малых ” и “ больших ” возмущений условны. Малое возмущение в данном случае понимается как возмущение, влияние которого на характер поведения системы проявляется практически независимо от места появления возмущающего воздействия и его величины. В связи с этим в диапазоне режимов, близких к исходному, система рассматривается как линейная.

Большое возмущение – это возмущение, влияние которого на характер поведения системы зависит от времени существования, величины и места появления воз­мущающего воздействия.

В связи с этим при исследовании динамической устойчивости система во всем диапазоне исследования должна рассматриваться как нелинейная.

Основным методом исследования динамической устойчивости электрических систем на современном этапе является численное интегрирование дифференциальных уравнений, описывающих поведение системы.

Эти расчеты проводятся на ЭВМ, которые работают по программам, контролирующим точность вычислений путём уменьшения шага интегрирования до тех пор, пока модуль разности между вычисленными значениями функции не окажется меньше некоторого заданного положительного числа e.

В зависимости от цели расчетов на практике часто пользуются упрощенными методами, не претендующими на высокую точность. Эти методы применяются, когда можно ограничиться общей характеристикой процесса. Среди упрощенных методов наибольшее распространение получил метод последовательных интервалов, суть которого заключается в приближенном вычислении интеграла.

Но существует более простой и наглядный метод, основанный на энергетическом подходе к анализу динамической устойчивости, который называется методом площадей. При этом методе кинетическая энергия системы определяется по площади графика переходного процесса. Задача исследования заключается в сра­внении площадей ускорения и торможения, то есть сравнения кинетиче­­ской энергии, полученной в процессе ускорения ротора генератора с той энергией, которая расходуется в процессе торможения ротора.

Устойчивость электрической системы, устойчивость электроэнергетической системы, способность электрической системы (ЭС) восстанавливать исходное (или практически близкое к нему) состояние (режим) после какого-либо его возмущения, проявляющегося в отклонении значений параметров режима ЭС от исходных (начальных) значений. В ЭС источниками электрической энергии обычно являются синхронные генераторы, связанные между собой электрически общей сетью, причём роторы всех генераторов вращаются синхронно; такой режим, называется нормальным, установившимся, должен быть устойчив, т. е. ЭС должна возвращаться в исходное (или практически близкое к нему) состояние всякий раз после отклонений от установившегося режима. Отклонения могут быть связаны, например, с изменением мощности нагрузки, короткими замыканиями, отключениями линий электропередачи и т.п. Устойчивость системы, как правило, уменьшается при увеличении нагрузки (мощности, отдаваемой генераторами) и понижении напряжения (росте мощности потребителей, снижении возбуждения генераторов); для каждой ЭС могут быть определены некоторые предельные (критические) значения этих или связанных с ними величин, характеризующих предел устойчивости. Надёжное функционирование ЭС возможно, если обеспечен определённый запас устойчивости ЭС, т. е. если параметры режима работы и параметры самой ЭС достаточно отличаются от критических. Для обеспечения У. э. с. предусматривают ряд мероприятий, таких, как обеспечение должного запаса устойчивости при проектировании ЭС, использование автоматического регулирования возбуждения генераторов, применение противоаварийной автоматики и т.д.

При анализе У. э. с. различают статическую, динамическую и результирующую устойчивость. Статическая устойчивость характеризует У. э. с. при малых возмущениях, т. е. таких возмущениях, при которых исследуемая ЭС может рассматриваться как линейная. Изучение статической устойчивости проводится на основе общих методов, разработанных А. М. Ляпуновым для решения задач об устойчивости. В инженерной практике исследование У. э. с. иногда проводят упрощённо, ориентируясь на практические критерии устойчивости, определяющие её наличие или отсутствие при некоторых вытекающих из практики допущениях (например, о невозможности т. н. самораскачивания системы, о неизменности частоты электрического тока в системе и др.). При исследовании статической устойчивости применяют цифровые и аналоговые вычислительные машины.



Динамическая устойчивость определяет поведение ЭС после сильных возмущений, возникающих вследствие коротких замыканий, отключении линий электропередач и т. и. При анализе динамической устойчивости (система, как правило, рассматривается как нелинейная) возникает необходимость интегрировать нелинейные трансцендентные уравнения высоких порядков. Для этого применяют аналоговые вычислительные машины и т. н. расчётные модели переменного тока; наиболее часто создают специальные алгоритмы и программы, позволяющие производить расчёты на ЦВМ. Состоятельность составленных программ проверяется сопоставлением результатов расчётов с результатами экспериментов на реальной ЭС либо на физической (динамической) модели ЭС.

Результирующая устойчивость характеризует У. э. с. при нарушении синхронизма части работающих генераторов. Последующее восстановление нормального режима работы происходит при этом без отключения основных элементов ЭС. Расчёты результирующей устойчивости производятся весьма приближённо (из-за их сложности) и имеют целью выявить недопустимые воздействия на оборудование, а также найти комплекс мероприятий, ведущих к ликвидации асинхронного режима работы ЭС.

Статическая У. э. с. может быть повышена в основном использованием сильного регулирования, динамическая – форсированием возбуждения генераторов, быстрым отключением аварийных участков, применением специальных устройств для торможения генераторов, отключением части генераторов и части нагрузки. Повышение результирующей устойчивости, обычно рассматриваемое как повышение живучести ЭС, достигается в первую очередь регулированием мощности, вырабатываемой выпавшими из синхронизма генераторами, и автоматическим отключением части потребителей (автоматической разгрузкой ЭС).

Метод площадей. Рассмотрим в качестве примера переход из нормального в аварийный и послеаварийный режимы простейшей системы, которая содержит генератор, работающий через трансформатор и двухцепную ЛЭП на шины бесконечной мощности (рис. 5.1). Смена состояний рассматриваемой системы представлена на рисунке через угловые характеристики активной мощности. Рабочая точка в нормальном установившемся режиме соответствует координатам (Р 0 , δ 0), отражающим равенство мощности, развиваемой первичным двигателем генератора, и мощности Р=Р m sin δ 0 , передаваемой генератором в сеть со сдвигом на угол δ 0 между эдс Е " и напряжением U. При появлении КЗ происходит сброс передаваемой мощности с Р доав (δ 0) до Р ав (δ 0) (на рисунке рабочий режим переходит из точки а в точку b), вследствие чего появляется избыточная мощность ∆Р ав =Р 0 – Р b , которая вызывает ускорение ротора генератора. Под действием этой избыточной мощности рабочая точка режима перемещается по угловой характеристике Р ав в направлении увеличения угла δ. На рис. 5.1 доаварийная, аварийная и послеаварийная мощности обозначены соответственно Р І ,Р ІІ ,Р ІІІ . . Если отключению повреждённой цепи соответствует угол δ откл, то ротор генератора во время ускорения запасает кинетическую энергию которая соответствует заштрихованной на рис. 5.1 площадке F авсd называемой площадью ускорения . Отключение повреждённого участка цепи электропередачи к возрастанию передаваемой в сеть мощности с Р с до Р е (на угловой характеристике Р Послеав). Так как Р е >Р с, то появляется тормозной момент на роторе генератора, соответствующий мощности ∆Рп. ав (δ)= Р п. ав – Р 0 , где δ >δ откл. Однако угол δ продолжает увеличиваться до тех пор, пока не будет израсходована запасённая во время ускорения кинетическая энергия ротора генератора. Рис. 5. 1. Угловые характеристики мощности для нормального, аварийного и послеаварийного режимов работы системы. Предельное значение энергии для изменения угла δ, равного δ откл – δ кр, определяется выражением Заштрихованная на рисунке площадь F def , называемая площадью торможения, соответствует кинетической и энергии, которая может быть израсходована вращающимся ротором во время торможения. Если рабочая точка режима возвратится в точку а , то говорят, что система динамически устойчива. Это возможно, если энергия ускорения меньше (равна) энергии торможения: А уск <А торм, Вытекающее из сравнения площади F abcd ускорения и площади торможения F def . Предельный угол отключения и предельное время отключения. Математически выражение равенства площадей ускорения и торможения записывается следующим образом: Из равенства (5.1) можно найти предельное по условию сохранения динамической устойчивости значения угла отключения повреждённого участка цепи ЛЭП: Предельное время отключения КЗ t откл.пред. соответствует полученному выше уравнению по предельному углу отключения. Для произвольного момента времени связь этих величин отражается уравнением движения Р т – Р эл =Т j (dω/dt)=T j α, Р т – Р эл =T j (d 2 δ/dt 2), где ω – угловая частота вращения ротора; α – угловое ускорение вращающихся масс. Аналитическое решение его возможно только для частного случая, а именно полного разрыва связи генератора с шинами приёмной системы, когда Р=Р ав (δ)=0, что происходит при трёхфазном КЗ на одной из цепе ЛЭП. При этом уравнение движения упрощается и принимает вид T j (d 2 δ/dt 2)=P 0 . Решение этого уравнения методом последовательного интегрирования при постоянных с 1 =(d δ/ dt) t=0 и с 2 = δ 0 позволяет получить выражение δ=Р 0 /(2Т j t 2)+ δ 0 , (5.3) откуда можно найти значение предельного времени отключения трёхфазного КЗ:

Под динамической устойчивостью понимается способность энергосистемы сохранять синхронную параллельную работу генераторов при значительных внезапных возмущениях, возникающих в энергосистеме (КЗ, аварийное отключение генераторов, линийу трансформаторов).

Для оценки динамической устойчивости применяется метод площадей. В качестве примера рассмотрим режим работы двухцепной электропередачи, связывающей электростанцию с энергосистемой, при КЗ на одной из линий с отключением поврежденной линии и ее успешным АПВ (рис. 10.3,а).

Исходный режим электропередачи характеризуется точкой 1, расположенной на угловой характеристике I, которая соответствует исходной схеме электропередачи (рис. 10.3,б).

Рис. 10.3. Качественный анализ динамической устойчивости при К3 на линии электропередачи: а - схема электропередачи; б - угловые характеристики электропередачи; в - изменение угла во времени

При К3 в точке К1 на линии W2 угловая характеристика электропередачи занимает положение II. Снижение амплитуды характеристики II вызвано значительным увеличением результирующего сопротивления между точками приложения . В момент К3 происходит сброс электрической мощности на величину за счет снижения напряжения на шинах станции (точка 2 на рис. 10.3,б). Сброс электрической мощности зависит от вида К3 и его места. В предельном случае при трехфазном К3 на шинах станции происходит сброс мощности до нуля. Под действием избытка механической мощности турбин над электрической мощностью роторы генераторов станции начинают ускоряться, а угол увеличивается. Процесс изменения мощности идет по характеристике II. Точка 3 соответствует моменту отключения поврежденной линии с двух сторон устройствами релейной защиты РЗ. После отключения линии режим электропередачи характеризуется точкой 4, расположенной на характеристике , которая соответствует схеме электропередачи с одной отключенной линией. За время изменения угла от до роторы генераторов станции приобретают дополнительную кинетическую энергию. Эта энергия пропорциональна площади, ограниченной линией , характеристикой II и ординатами в точках 1 и 3. Эта площадь получила название площадки ускорения . В точке 4 начинается процесс торможения роторов, так как электрическая мощность больше мощности турбин. Но процесс торможения происходит с увеличением угла . Увеличение угла будет продолжаться до тех пор, пока вся запасенная кинетическая энергия не перейдет в потенциальную.

Потенциальная энергия пропорциональна площади, ограниченной линией и угловыми характеристиками послеаварийного режима. Эта площадь получила название площадки торможения . В точке 5 по истечении некоторой паузы после отключения линии W2 срабатывает устройство АПВ (предполагается использование трехфазного быстродействующего АПВ с малой паузой). При успешном АПВ процесс увеличения угла будет продолжаться по характеристике (точка 6), соответствующей исходной схеме электропередачи. Увеличение угла прекратится в точке 7, которая характеризуется равенством площадок . В точке 7 переходный процесс не останавливается: вследствие того что электрическая мощность превышает мощность турбин, будет продолжаться процесс торможения по характеристике , но только с уменьшением, угла. Процесс установится в точке 1 после нескольких колебаний около этой точки. Характер изменения угла 5 во времени показан на рис. 10.3,в.

С целью упрощения анализа мощность турбин во время переходного процесса принята неизменной. В действительности она несколько меняется вследствие действия регуляторов частоты вращения турбин.

Таким образом, анализ показал, что в условиях данного примера сохраняется устойчивость параллельной работы. Необходимым условием динамической устойчивости является выполнение условий статической устойчивости в послеаварийном режиме. В рассмотренном примере это условие выполняется, так как мощность турбин не превышает предела статической устойчивости.

Устойчивость параллельной работы была бы нарушена, если бы в переходном процессе угол перешел значение, соответствующее точке 8. Точка 8 ограничивает справа максимальную площадку торможения. Угол, соответствующий точке 8, получил название критического . При переходе этой границы наблюдается лавинное увеличение угла , т.е. выпадение генераторов из синхронизма.

Запас динамической устойчивости оценивается коэффициентом, равным отношению максимально возможной площадки торможения к площадке ускорения:

При режим устойчив, при происходит нарушение устойчивости.

В случае неуспешного АПВ (включения линии на неустранившееся К3) процесс из точки 5 перейдет на характеристику II. Нетрудно убедиться, что в условиях данного примера устойчивость после повторного К3 и последующего отключения линии не сохраняется.