Солнечная система и её происхождение. Старт в науке



3.Основные этапы геологической истории: эволюция литосферы, атмосферы, гидросферы и живого мира.

3.1.Эволюция литосферы.
3.2.Эволюция атмосферы.
3.3.Эволюция гидросферы.

1.Строение Вселенной и Солнечной системы.

Вселенной или космосом называется весь окружающий материальный мир (греч. « космос » -мир). Вселенная бесконечна в пространстве и во времени. Материя во вселенной распределена неравномерно и представлена звездами, планетами, пылью, метеоритами, кометами, газами. Доступная для изучения часть Вселенной называется Метагалактикой, включающая свыше миллиарда звездных скоплений галактик (греч. « галактика » -молочный, млечный).

Наша Галактика носит название Млечного пути и относится к типу спиральных и включает свыше 150 млрд. звезд. Она представляет собой широкую белесую полосу звезд. Возраст Галактики ~ 12 млрд. лет.

Масса Солнца -99,87% от всей массы Галактики (Юпитер -крупнейшая планета -0,1%), поэтому оно центр притяжения всех космических тел. Физически Солнце -плазменный шар. Химический состав -70 элементов; главные: водород и гелий; средняя t ° С ~5600 ° С; возраст -6-6,5 млрд. лет. Тепловая энергия Солнца обусловлена термоядерными процессами превращения водорода в гелий.

Тепло и свет излучаемые Солнцем оказывают большое влияние на геологические процессы. Непрерывная взрывная деятельность на Солнце вызывает образование так называемого солнечного ветра (движение в пространстве заряженных частиц), с которым связаны полярное сияние и магнитные явления в атмосфере Земли.

В состав Солнечной системы входят 9 планет, 42 спутника, около 50 тысяч астероидов, множество метеоров и комет.

Орбиты планет располагаются в одной плоскости, совпадающей с экваториальной плоскостью Солнца и направлением обращения вокруг Солнца, кроме Венеры и Урана, оно обратное и совпадает с направлением вращения Солнца вокруг своей оси.

2.Гипотезы происхождения Солнечной системы и Земли.

Немецкий философ Эммануил Кассет в 1755 г. высказал идею происхождения Вселенной из первичной материи, состоящей из мельчайших частиц. Образование звезд, Солнца и других космический тел, по его мнению, произошло под воздействием сил притяжения и отталкивания в условиях хаотического движения частиц. Французский математик П. Лаплас (1796 г.) связывал образование солнечной системы с вращательным движением разряженной и раскаленной газообразной туманности, приведшим к возникновению сгустков материи -зародышей планет. По гипотезе Канта-Лапласа, первоначально раскаленная Земля охлаждалась, сжималась, что привело к деформации земной коры.

По гипотезе О. Ю. Шмидта (1943 г.) планетная система образовалась из пылевой и метеорной материи при попадании ее в сферу Солнца. Первоначально холодные Земля и другие планеты постепенно разогревались под воздействием энергии радиоактивного распада гравитационных и других процессов, а затем остывали.

Советский астроном В. Г. Фесенков в 50-е годы предложил решение проблемы с точки зрения образования Солнца и планет из общей среды, возникшей в результате уплотнения газопылевой материи. При этом предполагалось, что Солнце образовалось из центральной части сгущения, а планеты -из внешней частей.

По современным представлениям, тела Солнечной системы формировались из первично холодной космической твердой и газообразной материи путем уплотнения и сгущения до образования Солнца и прото планет. Астероиды и Метеориты считаются исходным материалом планет Земной группы (Меркурий, Венера, Земля, и Марс -небольшие по размерам; высокая плотность, малая масса атмосферы, небольшая скорость вращения вокруг своей оси); а кометы и метеоры -планет-гигантов (Юпитер, Сатурн, Уран, Нептун, Плутон -огромные размеры, низкая плотность, плотная атмосфера с H 2 , Ge и метаном, высокая скорость вращения). Формирование современных оболочек Земли связывается с процессами гравитационной дифференциации первоначального однородного вещества.

Самая передовая гипотеза -это объяснение возникновения Вселенной теорией Большого взрыва . В соответствии с этой теорией ~ 15 млрд. лет назад наша Вселенная была сжата в комок, в миллиарды раз меньше булавочной головки. По математическим расчетам ее диаметр был равен, а плотность близка к бесконечности. Такое состояние называется сингулярным -бесконечная плотность в точечном объеме. Неустойчивое исходное состояние вещества привело к взрыву, породившему скачкообразный переход к расширяющейся Вселенной.

Самый ранний этап развития Вселенной называется инфляционным -его период до 10 -33 секунды после взрыва. В результате возникают пространство и время. Размеры Вселенной в несколько раз превышают размеры современной, вещество отсутствует.

Следующий этап — горячий . Выброс тела связан с высвободившейся энергией при Большом взрыве. Излучение нагрело Вселенную до 1027 К. Затем наступил период остывания Вселенной в течение ~500 тысяч лет. В результате возникла однородная Вселенная. Переход от однородной к структурной происходил от 1 до 3 млрд. лет.

3.Основные этапы геологической истории: эволюция литосферы,

атмосферы, гидросферы и живого мира.

Геологическое развитие Земли характеризуется направленностью и необратимостью всех геологических событий, в том числе и тектонических, которые привели к формированию современной сложной структуры литосферы. Известный российский тектонист В. Е. Хаин. Виктор Ефимович (1914 г.р.) в 1973 году выделил этапы ее развития:

I. догеологический (4,6 -4,5 млрд. лет);

II. лунный; от образования земной коры до формирования гидросферы (4,5 -4,0 млрд. лет);

III. катархейский, образуется первичная континентальная литосфера, слагающая ядра будущих материков (4,0 -3,5 млрд. лет);

IV. подзднеархейско-раннепротерозойский или раннегеосинклинальный: образование протогеосинклиналей и первых платформ (3,5 -2,0 млрд. лет);

V. среднепротерозойский -раннерифейский или раннеплатформенный, консолидация первичной континентальной коры, 2,0 -1,4 млрд. лет;

VI. позднепротерозойский -палеозойский или геосинклинально-платформенный; обособление древних платформ и их развитие (1,4 -0,2 млрд.лет);

VII. мезозойско-кайнозойский или континентально-океанический; оформление современных континентов, создание на палеозойских и раннемезозойских складчатых структур молодых платформ; образование молодых океанов (0,2 млрд. лет).

В геологическом развитии последних этапов истории Земли наблюдается определенная направленность: постоянно увеличивается объем литосферы и верхней мантии, а также размеры устойчивых плит, несмотря на прослеживание противоположного процесса -океанизация за счет обрушения и развития облаков материков.

Для направленного развития литосферы характерна цикличность процессов, которые проявляются преимущественно на различных территориях. Т. о. в истории Земли наблюдаются определенные этапы развития литосферы, на протяжении которых тектонические процессы приводят к тектонической перестройке то одних участков литосферы то других.

При этом в истории литосферы можно выделить периоды интенсивных тектонических деформаций, в ходе которых происходжит горообразование. Это явление объясняют длительной аккумуляцией напряжений в литосфере и последующей их разрядкой в виде тектонических процессов.

Этапы тектоногенеза.

Длительные периоды, по завершении которых тектонические процессы, в т.ч. и горообразование, проявляются наиболее интенсивно, называются тектоническими циклами или циклами (этапами) тектоногенеза. Они носят планетарный характер.

В истории Земли выделяют 11 основных циклов тектоногенеза: от раннеархического до альпийского (или кайнозойского) незавершенного. В долембрии они имеют продолжительность 300-600 млн. лет, в фалерозое -140-170 млн. лет, в кайнозое -80 млн. лет.

Каждый тектонический цикл состоит из двух частей: длительного эволюционного развития и кратковременных активных тектонических деформаций , которые сопровождаются региональным метаморфизмом, горообразованием.

Завершающая часть цикла называется эпохой складчатости , для которой характерно окончание развития отдельных геосинклинальных систем и их превращение в эпигеосинклинальный ороген, после чего развивается плит форма или образуются внегеосинклинальные горные сооружения.

Для эволюционных этапов характерно:

— длительное прогибание геос-их (подвижных) областей и накопление в них мощных осадочных и осадочно-вулканических толщ;

— выравнивание рельефа суши (разрушение гор, плоскостной смыв с платформенных равнин и т.д.);

— обширные опускания окраин платформ, прилегающих к геосинклинальным областям, затопление их водами эпиконтинентальных морей;

— выравнивание климатических условий, что связано с широким распространением мелких темных эпиконтинентальных морей и увлажнением климата материков; в нижних слоях атмосферы происходит аккумуляция солнечной энергии; исчезают области определения;

— возникновение благоприятных условий для жизни и широкого расселения фауны и флоры.

Эти этапы эволюционного развития Земли называют таласократическими. Для них характерно широкое развитие морских отложений, развитие растительности и соотв. Формирование угольных залежей, бурное развитие жизни в морях, формирование нефтегазоносных толщ, карб. Пород в теплых морях.

Эпохам складчатости и горообразования присущи следующие черты:

— широкое развитие горообразовательных движений в геос. областях, колебательных движений на платформах;

— проявление мощного интрузивного, а затем и эффузивного магматизма;

— поднятие окраин платформ, прилегающих к эпиогеосинклинальным областям, регрессии эпиконтинентальных морей и усложнение рельефов суши;

— континентализация климатов, успокоение климатических условий, усиление зональности, расширение пустынь и появление областей континентального оледенения (в горах и у помостов).

— ухудшение условий для развития органического мира, в результате чего происходит вымирание господствующих и высокоспециализированных форм и появление новых.

Условия этих эпох складчатости называются геократическими, т.е. этапы относительного увеличения суши.

На Земле развиты континентальные отложения с частыми красно цветными образованиями (иногда карбональными, загипсованными и засоленными), имеющими разнообразный генезис (образование в пустынях, лагунах, солоноватых или пресных озерах, дельтах рек, на равнинах и предгорьях).

3.2.Эволюция атмосферы

Атмосфера не всегда имела современный состав и строение. Первичная гелиево-водородная атмосфера была утеряна Землей при разогреве. Из образовавшего планету вещества, при ее формировании выделялись различные газы. Особенно интенсивно это происходило в процессе тектонической деятельности: при образовании трещин и разломов.

Вероятно, атмосфера и гидросфера разделись не сразу. Некоторое время Землю обволакивал мощный слой из водяного пара и газов (CO, CO 2 , HF, H 2 , S, NH 3 , CH 4); малопроницаемых для солнечных лучей. Эта оболочка имела температуру ~ +100 ° С. При понижении температуры произошло разделение этой оболочки на атмосферу и гидросферу. Свободного кислорода в этой атмосфере не было. Он должен был выделяться из земного вещестьва и образовывался за счет размножения молекул водяного пара, но расходовался на процессы окисления. Из-за отсутствия озона атмосфера не предохраняла Землю от коротковолнового излучения Солнца. Значительное количество соединений водорода на Земле -последствия его преобладания в первичной атмосфере.

Вулканические процессы обогатили атмосферу углекислым газом. Понадобилось длительное время, прежде чем в результате реакции с другими элементами и фотосинтеза произошло поглощение большого количества углерода из атмосферы. В конце PZ состав атмосферы в целом уже мало отличался от современного: она стала азотно-кислородной. Состав современной атмосферы как и в ранние геологические эпохи регулируется организмами.

Атмосфера находится в непрерывном взаимодействии с другими оболочками Земли, обмениваясь веществом и энергией, и постоянно испытывает влияние Космоса и Солнца.

3.3.Эволюция гидросферы.

Гидросфера -водная оболочка Земли, включающая химически не связанную воду независимо от ее состояния: жидкую, твердую, газообразную.

Земля -самая водная планета Солнечной системы: более 70% ее поверхности покрыто водами Мирового океана.

Вероятно, гидросфера образовалась одновременно с литосферой и атмосферой в результате остывания и дегазации вещества мантии. Химически связанная вода была уже в веществе холодного газово-пылевого протопланетного облака. Под влиянием глубинного тепла Земли она выделялась и перемещалась к поверхности Земли. Первичный океан, возможно, покрывал почти всю Землю, но не был глубоким. Океаническая вода, вероятно, была теплой, высоко минерализованной. Океан углублялся, а площадь его сокращалась. С поверхности Океана испарялась влага, выпадали обильные дожди.

Пресная вода на суше -результат прохождения океанской воды через атмосферу. Выделение воды из магмы продолжается до настоящего времени. При извержении вулканов выделяется в среднем за год 1,310 8 т воды. Термальные источники и фумаролы выносят 10 8 т.

Если допустить, что поступление воды из мантии в литосферу и на ее поверхность было равномерным и составляло в год на 1 см 2 поверхности планеты всего 0,00011г, то и этого достаточно, чтобы за время существования Земли образовалась гидросфера.

Предполагают также поступления воды из космоса в результате падения на Землю ледяных ядер комет, но ее количество в этом случае невелико.

Гидросфера также теряет воду с испарением ее в Космос, где под действием у/ф лучей H 2 O распадается на H 2 и O 2 .

3.4.Эволюция животного мира (биосферы).

Активное взаимодействие атмосферы, гидросферы и литосферы при участии солнечной энергии и внутреннего тепла Земли было важнейшей предпосылкой возникновения жизни.

Данные палеонтологических исследований позволяют предполагать, что примитивнейшие организмы сформировались из белковых структур в конце AR 1 (т.е. ~3 млрд. лет назад). Первые одноклеточные организмы, способные к фотосинтезу, возникли около 2,7 млрд. лет назад, а первые многоклеточные животные — не менее чем на 1-1,5 млрд. лет позже.

В условиях отсутствия озонового экрана местами развития жизни вероятно были прибрежные части морей и внутренние водоемы, на дно которых проникал солнечный свет, а вода не пропускала у/фиолетовую радиацию. Из соединений образовались многомолекулярные системы, взаимодействующие со средой.

В ходе эволюции они приобрели свойства живых организмов: размножение, обмен веществ, рост и т.д.

Водная среда способствовала обмену веществ, была опорой для организмов без скелета. Первые живые организмы появились в условиях теплого и влажного климата (в при экваториальной широте), поскольку колебания температуры губительны для зарождающейся жизни.

Длительное время жизнь « размещалась » в географической оболочке пятнами, « пле нка жизни » была очень прерывистой. Со временем масса живого вещества быстро увеличивалась, формы жизни становились сложнее и разнообразнее, области ее распространения расширялись, усложнялись взаимосвязи с другими компонентами географической оболочки.

Широкому и быстрому распространению жизни на Земле способствовали приспособляемость к среде и возможности размножения.

Гипотеза об образовании Солнечной системы из газопылевого облака - небулярная гипотеза - первоначально была предложена в XVIII веке Эммануилом Сведенборгом, Иммануилом Кантом и Пьером-Симоном Лапласом. В дальнейшем её развитие происходило с участием множества научных дисциплин, в том числе астрономии, физики, геологии и планетологии. С началом космической эры в 1950-х годах, а также с открытием в 1990-х годах планет за пределами Солнечной системы (), эта модель подверглась многократным проверкам и улучшениям для объяснения новых данных и наблюдений.

Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного газопылевого облака. В общих чертах, этот процесс можно описать следующим образом:

  • Спусковым механизмом гравитационного коллапса стало небольшое (спонтанное) уплотнение вещества газопылевого облака (возможными причинами чего могли стать как естественная динамика облака, так и прохождение сквозь вещество облака ударной волны от взрыва , и др.), которое стало центром гравитационного притяжения для окружающего вещества - центром гравитационного коллапса. Облако уже содержало не только первичные водород и гелий, но и многочисленные тяжёлые элементы (Металличность), оставшиеся после звёзд предыдущих поколений. Кроме того, коллапсирующее облако обладало некоторым начальным угловым моментом.
  • В процессе гравитационного сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного диска.
  • Как следствие сжатия росла плотность и интенсивность столкновений друг с другом частиц вещества, в результате чего температура вещества непрерывно возрастала по мере сжатия. Наиболее сильно нагревались центральные области диска.
  • При достижении температуры в несколько тысяч кельвинов, центральная область диска начала светиться - сформировалась протозвезда. Вещество облака продолжало падать на протозвезду, увеличивая давление и температуру в центре. Внешние же области диска оставались относительно холодными. За счёт гидродинамических неустойчивостей, в них стали развиваться отдельные уплотнения, ставшие локальными гравитационными центрами формирования планет из вещества протопланетного диска.
  • Когда температура в центре протозвезды достигла миллионов кельвинов, в центральной области началась реакция термоядерного синтеза гелия из водорода. Протозвезда превратилась в обычную звезду главной последовательности. Во внешней области диска крупные сгущения образовали планеты, вращающиеся вокруг центрального светила примерно в одной плоскости и в одном направлении.

Последующая эволюция

Раньше считалось, что все планеты сформировались приблизительно на тех орбитах, где находятся сейчас, однако в конце XX - начале XXI века эта точка зрения радикально изменилась. Сейчас считается, что на заре своего существования Солнечная система выглядела совсем не так, как она выглядит сейчас. По современным представлениям, внешняя Солнечная Система была гораздо компактнее по размеру чем сейчас, был гораздо ближе к Солнцу, а во внутренней Солнечной системе помимо доживших до настоящего времени небесных тел существовали и другие объекты, по размеру не меньшие чем .

Планеты земного типа

Гигантское столкновение двух небесных тел, возможно, породившее спутник Земли Луну

В конце эпохи формирования планет внутренняя Солнечная система была населена 50-100 протопланетами с размерами, варьирующимися от лунного до марсианского. Дальнейший рост размеров небесных тел был обусловлен столкновениями и слияниями этих протопланет между собой. Так, например, в результате одного из столкновений Меркурий лишился большей части своей мантии, в то время как в результате другого т.н. гигантского столкновения (возможно, с гипотетической планетой Тейя) был рождён спутник . Эта фаза столкновений продолжалась около 100 миллионов лет до тех пор, пока на орбитах не осталось 4 массивных небесных тела, известных сейчас.

Одной из нерешённых проблем данной модели является тот факт, что она не может объяснить, как начальные орбиты протопланетных объектов, которые должны были обладать высоким эксцентриситетом, чтобы сталкиваться между собой, смогли в результате породить стабильные и близкие к круговым орбиты оставшихся четырёх планет. По одной из гипотез, эти планеты были сформированы в то время, когда межпланетное пространство ещё содержало значительное количество газо-пылевого материала, который за счёт трения снизил энергию планет и сделал их орбиты более гладкими. Однако этот же самый газ должен был предотвратить возникновение большой вытянутости в первоначальных орбитах протопланет. Другая гипотеза предполагает, что коррекция орбит внутренних планет произошла не за счёт взаимодействия с газом, а за счёт взаимодействия с оставшимися более мелкими телами системы. По мере прохождения крупных тел сквозь облако мелких объектов последние из-за гравитационного влияния стягивались в регионы с более высокой плотностью, и создавали таким образом «гравитационные гребни» на пути прохождения крупных планет. Увеличивающееся гравитационное влияние этих «гребней», согласно этой гипотезе, заставляло планеты замедляться и выходить на более округлую орбиту.

Пояс астероидов

Внешняя граница внутренней Солнечной системы располагается между 2 и 4 а.е. от Солнца и представляет собой . Выдвигались, но в итоге не были подтверждены гипотезы о существовании планеты между и (например, гипотетической планеты Фаэтон), которая на ранних этапах формирования Солнечной системы разрушилась так, что её осколками стали астероиды, сформировавшие пояс астероидов. Согласно современным воззрениям, единой протопланеты-источника астероидов не было. Изначально астероидный пояс содержал достаточное количество материи, чтобы сформировать 2-3 планеты размером с Землю. Эта область содержала большое количество планетозималей, которые слипались между собой, образуя всё более крупные объекты. В результате этих слияний в поясе астероидов сформировалось около 20-30 протопланет с размерами от лунного до марсианского. Однако начиная с того времени, когда в относительной близости от пояса сформировалась планета Юпитер, эволюция этой области пошла по другому пути. Мощные орбитальные резонансы с Юпитером и , а также гравитационные взаимодействия с более массивными протопланетами этой области разрушали уже сформированные планетозимали. Попадая в область действия резонанса при прохождении поблизости планеты-гиганта планетозимали получали дополнительное ускорение, врезались в соседние небесные тела и дробились вместо того чтобы плавно сливаться.

По мере миграции Юпитера к центру системы возникающие возмущения имели всё более выраженный характер. В результате этих резонансов планетозимали меняли эксцентриситет и наклонение своих орбит и даже выбрасывались за пределы астероидного пояса. Некоторые из массивных протопланет также были выброшены Юпитером за пределы пояса астероидов, в то время как другие протопланеты, вероятно, мигрировали во внутреннюю Солнечную систему, где сыграли финальную роль в увеличении массы нескольких оставшихся планет земного типа. В течение этого периода истощения влияние планет-гигантов и массивных протопланет заставило астероидный пояс «похудеть» до всего лишь 1 % от Земной массы, которую составляли в основном маленькие планетозимали. Эта величина, однако, в 10-20 раз больше современного значения массы астероидного пояса, которая теперь составляет 1/2000 массы Земли. Считается, что второй период истощения, который и привёл массу астероидного пояса к текущим значениям, наступил, когда Юпитер и Сатурн вошли в орбитальный резонанс 2:1.

Вполне вероятно, что период гигантских столкновений в истории внутренней Солнечной системы сыграл важную роль в получении Землёй её запасов воды (~6·10 21 кг). Дело в том, что вода - слишком летучее вещество, чтобы возникнуть естественным образом во время формирования Земли. Скорее всего она была занесена на Землю из внешних, более холодных областей Солнечной системы. Возможно, именно протопланеты и планетозимали, выброшенные Юпитером за пределы астероидного пояса, занесли воду на Землю. Другими кандидатами на роль главных доставщиков воды являются также главного пояса астероидов, обнаруженные в 2006 году, в то время как кометы из пояса Койпера и из других отдалённых областей предположительно занесли на Землю не более 6 % воды.

Планетная миграция

В соответствии с небулярной гипотезой, две внешние планеты Солнечной системы находятся в «неправильном» месте. и , «ледяные гиганты» Солнечной системы, располагаются в области, где пониженная плотность вещества туманности и длительные орбитальные периоды делали формирование таких планет весьма маловероятным событием. Считается, что эти две планеты изначально сформировались на орбитах вблизи Юпитера и Сатурна, где имелось гораздо больше строительного материала, и только спустя сотни миллионов лет мигрировали на свои современные позиции.

Симуляция, показывающая расположение внешних планет и пояса Койпера: a) Перед орбитальным резонансом 2:1 Юпитера и Сатурна b) Разбрасывание объектов древнего пояса Койпера по Солнечной системе после сдвига орбиты Нептуна c) После выбрасывания Юпитером объектов пояса Койпера за пределы системы

Планетная миграция в состоянии объяснить существование и свойства внешних регионов Солнечной системы. За Нептуном Солнечная система содержит пояс Койпера, и , представляющие собой рассеянные скопления маленьких ледяных тел и дающие начало большинству наблюдаемых в Солнечной системе комет. Сейчас пояс Койпера располагается на расстоянии 30-55 а.е. от Солнца, рассеянный диск начинается в 100 а.е. от Солнца, а облако Оорта - в 50 000 а.е. от центрального светила. Однако в прошлом пояс Койпера был гораздо плотнее и ближе к Солнцу. Его внешний край находился примерно в 30 а.е. от Солнца, в то время как его внутренний край располагался непосредственно за орбитами Урана и Нептуна, которые в свою очередь были также ближе к Солнцу (приблизительно 15-20 а.е.) и, кроме того, располагались в противоположном порядке: Уран был дальше от Солнца чем Нептун.

После формирования Солнечной системы орбиты всех планет-гигантов продолжали медленно изменяться под влиянием взаимодействий с большим количеством оставшихся планетозималей. Спустя 500-600 миллионов лет (4 миллиарда лет назад) Юпитер и Сатурн вошли в орбитальный резонанс 2:1; Сатурн совершал один оборот вокруг Солнца в точности за то время, за которое Юпитер совершал 2 оборота. Этот резонанс создал гравитационное давление на внешние планеты, вследствие чего Нептун вырвался за пределы орбиты Урана и врезался в древний пояс Койпера. По этой же причине планеты стали отбрасывать окружающие их ледяные планетозимали вовнутрь Солнечной системы, в то время как сами стали отдаляться вовне. Этот процесс продолжался аналогичным образом: под действием резонанса планетозимали выбрасывались вовнутрь системы каждой последующей планетой, которую они встречали на своём пути, а орбиты самих планет отдалялись все дальше. Этот процесс продолжался до тех пор, пока планетозимали не вошли в зону непосредственного влияния Юпитера, после чего огромная гравитация этой планеты отправила их на высокоэллиптические орбиты или даже выбросила их за пределы Солнечной системы. Эта работа в свою очередь слегка сдвинула орбиту Юпитера вовнутрь. Объекты, выброшенные Юпитером на высокоэллиптические орбиты, сформировали облако Оорта, а тела, выброшенные мигрирующим Нептуном, сформировали современный пояс Койпера и рассеянный диск. Данный сценарий объясняет, почему рассеянный диск и пояс Койпера имеют малую массу. Некоторые из катапультированных объектов, включая , со временем вошли в гравитационный резонанс с орбитой Нептуна. Постепенно трение с рассеянным диском сделало орбиты Нептуна и Урана вновь гладкими.

Существует также гипотеза о пятом газовом гиганте, претерпевшем радикальную миграцию и вытолкнутом при формировании современного облика Солнечной системы на её далёкие окраины (ставшим гипотетической планетой Тюхе или другой «Планетой X») или даже за её пределы (ставшим планетой-сиротой).

Подтверждение теории о массивной планете за орбитой Нептуна нашли Констанин Батыгин и Майкл Браун 20 января 2016 года на основе орбит шести транснептуновых объектов. Её масса, использующаяся в расчётах составляла примерно 10 земных масс, а оборот вокруг Солнца предположительно занимал от 10.000 до 20.000 земных лет.

Считается, что в отличие от внешних планет внутренние тела системы не претерпевали значительных миграций, поскольку после периода гигантских столкновений их орбиты оставались стабильными.

Поздняя тяжёлая бомбардировка

Гравитационное разрушение древнего астероидного пояса, вероятно, положило начало периоду тяжёлой бомбардировки, происходившему около 4 миллиардов лет назад, через 500-600 миллионов лет после формирования Солнечной системы. Этот период длился несколько сотен миллионов лет и его последствия видны до сих пор на поверхности геологически неактивных тел Солнечной системы, таких как Луна или Меркурий, в виде многочисленных кратеров ударного происхождения. А самое древнее свидетельство жизни на Земле датируется 3,8 миллиардами лет назад - почти сразу после окончания периода поздней тяжёлой бомбардировки.

Гигантские столкновения являются нормальной (хоть и редкой в последнее время) частью эволюции Солнечной системы. Доказательствами этого служат столкновение кометы Шумейкера-Леви с Юпитером в 1994, падение на Юпитер небесного тела в 2009 и метеоритный кратер в Аризоне. Это говорит о том, что процесс аккреции в Солнечной системе ещё не закончен, и, следовательно, представляет опасность для жизни на Земле.

Формирование спутников

Естественные спутники образовались у большинства планет Солнечной системы, а также у многих других тел. Различают три основных механизма их формирования:

  • формирование из около-планетного диска (в случае газовых гигантов)
  • формирование из осколков столкновения (в случае достаточно крупного столкновения под малым углом)
  • захват пролетающего объекта

Юпитер и Сатурн имеют много спутников, таких как , и , которые, вероятно, сформировались из дисков вокруг этих планет-гигантов по тому же принципу, как и сами эти планеты сформировались из диска вокруг молодого Солнца. На это указывают их большие размеры и близость к планете. Эти свойства невозможны для спутников, приобретённых путём захвата, а газообразная структура планет делает невозможной и гипотезу формирования лун путём столкновения планеты с другим телом.

Будущее

По оценкам астрономов Солнечная система не будет претерпевать экстремальных изменений до тех пор, пока Солнце не израсходует запасы водородного топлива. Этот рубеж положит начало переходу Солнца с главной последовательности диаграммы Герцшпрунга - Рассела в фазу . Однако и в фазе главной последовательности звезды Солнечная система продолжает эволюционировать.

Долговременная устойчивость

Солнечная система является хаотичной системой, в которой орбиты планет непредсказуемы на очень длинном отрезке времени. Одним из примеров такой непредсказуемости является система Нептун-Плутон, находящаяся в орбитальном резонансе 3:2. Несмотря на то, что сам по себе резонанс будет оставаться стабильным, невозможно предсказать хоть с каким-нибудь приближением положение Плутона на орбите более чем на 10-20 миллионов лет (время Ляпунова). Другим примером может служить наклон оси вращения Земли, который по причине трения внутри Земной мантии, вызванного приливными взаимодействиями с Луной, невозможно высчитать начиная с некоторого момента между 1.5 и 4.5 миллиардами лет в будущем.

Орбиты внешних планет хаотичны на больших временных масштабах: их время Ляпунова составляет 2-230 миллионов лет. Это не только означает, что позицию планеты на орбите начиная с этого момента в будущем невозможно определить хоть с каким-нибудь приближением, но и орбиты сами по себе могут экстремально измениться. Наиболее сильно хаос системы может проявиться в изменении эксцентриситета орбиты, при котором орбиты планет становятся более или менее эллиптическими.

Солнечная система является устойчивой в том смысле, что никакая из планет не может столкнуться с другой или быть выброшенной за пределы системы в ближайшие несколько миллиардов лет. Однако за этими временными рамками, например, в течение 5 миллиардов лет, эксцентриситет орбиты Марса может вырасти до значения 0,2, что приведёт к пересечению орбит Марса и Земли, а значит, и к реальной угрозе столкновения. В этот же период времени эксцентриситет орбиты Меркурия может увеличиться ещё больше, и впоследствии близкое прохождение около может выбросить Меркурий за пределы Солнечной системы, или вывести на курс столкновения с самой Венерой или с Землёй.

Спутники и кольца планет

Эволюция лунных систем планет определяется приливными взаимодействиями между телами системы. Из-за разности силы гравитации, воздействующей на планету со стороны спутника, в разных её областях (более удалённые области притягиваются слабее, в то время как более близкие - сильнее), форма планеты изменяется - она как бы слегка вытягивается в направлении спутника. Если направление обращения спутника вокруг планеты совпадает с направлением вращения планеты, и при этом планета вращается быстрее чем спутник, то этот «приливный бугор» планеты будет постоянно «убегать» вперёд по отношению к спутнику. В этой ситуации угловой момент вращения планеты будет передаваться спутнику. Это приведёт к тому, что спутник будет получать энергию и постепенно удаляться от планеты, в то время как планета будет терять энергию и вращаться все медленнее и медленнее.

Земля и Луна являются примером такой конфигурации. Вращение Луны приливно-закреплено по отношению к Земле: период обращения Луны вокруг Земли (в настоящее время примерно 29 дней) совпадает с периодом вращения Луны вокруг своей оси, и поэтому Луна всегда повёрнута к Земле одной и той же стороной. Луна постепенно отдаляется от Земли, в то время как вращение Земли постепенно замедляется. Через 50 миллиардов лет, если они переживут расширение Солнца, Земля и Луна станут приливно-закреплены по отношению друг к другу. Они войдут в так называемый спин-орбитальный резонанс, при котором Луна будет обращаться вокруг Земли за 47 дней, период вращения обоих тел вокруг своей оси будет одинаков, и каждое из небесных тел будет всегда видимо только с одной стороны для своего партнёра.

Другими примерами такой конфигурации являются системы Галилеевых спутников Юпитера, а также большинство крупных лун Сатурна.

Нептун и его спутник Тритон, заснятый при пролёте миссии Вояджер-2. В будущем, вероятно, этот спутник будет разорван на части приливными силами, породив новое кольцо вокруг планеты.

Иной сценарий ожидает системы, в которых спутник движется вокруг планеты быстрее, чем она вращается вокруг себя, или в которых спутник движется в направлении противоположном направлению вращения планеты. В таких случаях приливная деформация планеты постоянно отстаёт от позиции спутника. Это меняет направление переноса углового момента между телами на противоположное. что в свою очередь приведёт к ускорению вращения планеты и сокращению орбиты спутника. С течением времени спутник будет приближаться по спирали к планете, пока в какой-то момент либо не упадёт на поверхность или в атмосферу планеты, либо не будет разорван приливными силами на части, породив таким образом планетарное кольцо. Такая судьба ожидает спутник Марса (через 30-50 миллионов лет), спутник Нептуна (через 3,6 миллиарда лет), и Юпитера, и, как минимум, 16 мелких лун Урана и Нептуна. Спутник Урана при этом может быть даже столкнётся с луной-соседкой.

Ну и, наконец, в третьем типе конфигурации планета и спутник приливно-закреплены по отношению друг к другу. В этом случае «приливный бугор» расположен всегда точно под спутником, передача углового момента отсутствует, и, как следствие, орбитальный период не меняется. Примером такой конфигурации является Плутон и .



Пересказ истории рождения нашей Солнечной системы весьма однообразен уже многие годы. Все началось миллиарды лет назад с темного и медленно вращающегося облака газа и пыли. Облако сжималось, образуя в своем центре Солнце. Со временем из остатков газа и твердых обломков, крутившихся вокруг нашей звезды, сформировались восемь планет и множество меньших тел, таких как . С тех пор планеты кружат вокруг Солнца и их движения точны и предсказуемы, как часовой механизм.

В последнее время астрономы обнаруживают факты, опровергающие эту старую сказку. По сравнению с устройством тысяч недавно обнаруженных экзопланетных систем наиболее характерные черты нашей Солнечной системы - ее внутренние каменистые планеты, внешние газовые гиганты и отсутствие планет внутри орбиты Меркурия - выглядят довольно странно. Моделируя на компьютерах прошлое, мы видим, что эти причуды стали продуктом бурной молодости. Необходимо переписать историю Солнечной системы, включив в нее гораздо больше драмы и хаоса, чем большинство из нас ожидали.

Новый вариант истории повествует о блуждающих планетах, изгнанных из родных мест, о потерянных мирах, сгинувших давным-давно в огненном пекле Солнца, и об одиноких гигантах, заброшенных в холодные глубины у границы межзвездного пространства. Изучая эти древние события и оставшиеся после них «шрамы» - вроде предполагаемой девятой планеты, которая может скрываться за орбитой Плутона, - астрономы выстраивают стройную картину важнейших формообразующих эпох Солнечной системы на фоне нового понимания космических процессов.

Классическая Солнечная система

Планеты- это побочный продукт формирования звезд, протекающего в недрах гигантских молекулярных облаков, превосходящих наше Солнце по массе в 10 тыс. раз. Отдельные уплотнения в облаке под действием гравитации сжимаются, образуя в своем центре светящуюся протозвезду, окруженную широким непрозрачным кольцом из газа и пыли - протопланетным диском.

Многие десятилетия теоретики моделировали протопланетный диск нашего Солнца, пытаясь объяснить одну из важнейших особенностей Солнечной системы: ее деление на группы каменистых и газовых планет. Орбитальные периоды четырех землеподобных планет заключены между 88-дневным Меркурием и 687-дневным Марсом. В отличие от этого известные газовые гиганты находятся на гораздо более далеких орбитах с периодами от 12 до 165 лет и все вместе более чем в 150 раз превосходят по массе планеты земной группы.

Оба типа планет, как полагают, родились в едином процессе формирования, в котором твердые пылинки, мчась в турбулентном вихре газового диска, сталкивались и слипались, образуя тела километрового масштаба - планетезимали (примерно так на неподметенном полу вашей кухни воздушные потоки и электростатические силы скатывают пылевые шарики). Самые крупные планетезимали обладали наибольшим гравитационным притяжением и росли быстрее других, притягивая мелкие частицы к своей орбите. Вероятно, в течение миллиона лет в процессе сжатия из облака протопланетный диск нашей Солнечной системы, как и любой другой во Вселенной, кишел планетными эмбрионами размером с Луну.

Самый крупный эмбрион располагался непосредственно за современным поясом астероидов, достаточно далеко от света и тепла новорожденного Солнца, где в протопланетном диске сохранялись льды. За этой «границей льдов» эмбрионы могли пировать на обильных россыпях планетостроительных льдов и вырастать до огромных размеров. Как водится, «богатые становятся богаче»: крупнейший эмбрион рос быстрее других, выгребая своим гравитационным полем большую часть доступного льда, газа и пыли из окружающего диска. Всего лишь примерно за миллион лет этот жадный эмбрион вырос настолько, что стал планетой Юпитер. Как думали теоретики, то был решающий момент, когда архитектура Солнечной системы разделилась надвое. Отстав от Юпитера, другие планеты-гиганты Солнечной системы оказались мельче, поскольку они росли медленнее, захватывая своей гравитацией лишь тот газ, который не успел захватить Юпитер. А внутренние планеты оказались еще намного мельче, так как они родились внутри границы льдов, где диск был почти лишен газа и льда.

Экзопланетная революция

Когда два десятилетия назад астрономы стали обнаруживать экзопланеты, они начали тестировать теорию формирования Солнечной системы на галактическом масштабе. Многие из первых открытых экзопланет оказались «горячими юпитерами», то есть газовыми гигантами, стремительно обращающимися вокруг своих звезд с периодами всего несколько суток. Существование гиганских планет так близко к пылающей поверхности звезды, где лед совершенно отсутствует, полностью противоречит классической картине формирования планет. Чтобы объяснить этот парадокс, теоретики предположили, что горячие юпитеры формируются вдали, а затем как-то мигрируют внутрь.

Более того, основываясь на данных о тысячах экзопланет, обнаруженных в таких обзорах, как сделанный космическим телескопом NASA «Кеплер», астрономы пришли к тревожному выводу о том, что двойники Солнечной системы весьма редки. Средняя планетная система содержит одну или несколько суперземель (планет, в несколько раз больших Земли) с орбитальными периодами короче примерно 100 суток. А гигантские планеты типа Юпитера и Сатурна встречаются лишь у 10% звезд, и еще реже они движутся по почти круговым орбитам.

Обманутые в своих ожиданиях, теоретики поняли, что «несколько важных деталей» классической теории формирования нашей планетной системы требуют лучшего объяснения. Почему внутренняя область Солнечной системы столь маломассивна в сравнении с ее экзопланетными аналогами? Вместо суперземель в ней мелкие каменистые планеты, и нет ни одной внутри 88-суточной орбиты Меркурия. И почему орбиты планет-гигантов у Солнца такие круглые и широкие?

Очевидно, ответы на эти вопросы кроются в недостатках классической теории формирования планет, не учитывающей изменчивость протопланетных дисков. Оказывается, новорожденная планета, как спасательный плотик в океане, может дрейфовать далеко от места своего рождения. После того как планета подросла, ее гравитация начинает влиять на окружающий диск, возбуждая в нем спиральные волны, гравитация которых оказывает влияние уже на движение самой планеты, создавая мощные положительную и отрицательную обратные связи между планетой и диском. В результате может происходить необратимый обмен импульсом и энергией, позволяющий молодым планетам отправляться в эпическое путешествие по родительскому диску.

Если учесть процесс миграции планет, то границы льдов внутри дисков уже не играют особой роли в формировании структуры планетных систем. Например, планеты-гиганты, рожденные за границей льдов, могут стать горячими юпитерами, дрейфуя к центру диска, то есть путешествуя вместе с газом и пылью по спирали по направлению к звезде. Беда в том, что этот процесс работает даже слишком хорошо и, кажется, должен происходить во всех протопланетных дисках. Тогда как же объяснить далекие орбиты Юпитера и Сатурна вокруг Солнца?

Смена галса

Первый намек на убедительное объяснение дала в 2001 г. компьютерная модель Фредерика Массе (Frederic Masset) и Марка Снэллгроува (Mark Snellgrove) из Лондонского университета королевы Марии. Они моделировали одновременную эволюцию орбит Сатурна и Юпитера в протопланетном диске Солнца. Из-за меньшей массы Сатурна его миграция к центру происходит быстрее, чем у Юпитера, в результате чего орбиты этих двух планет сближаются. В конце концов орбиты достигают определенной конфигурации, известной как резонанс средних движений, при котором Юпитер делает три оборота вокруг Солнца за каждые два орбитальных периода Сатурна.

Две планеты, связанные резонансом средних движений, могут обмениваться друг с другом импульсом и энергией туда-сюда, наподобие межпланетной игры с перебрасыванием горячей картофелины. Из-за согласованной природы резонансных возмущений обе планеты оказывают усиленное гравитационное влияние друг на друга и на свое окружение. В случае Юпитера и Сатурна эта «раскачка» позволила им коллективно воздействовать своей массой на протопланетный диск, создав в нем большой разрыв с Юпитером на внутренней стороне и Сатурном на внешней. Причем из-за своей большей массы Юпитер сильнее притягивал к себе внутренний диск, чем Сатурн- внешний. Парадоксально, но это заставило обе планеты изменить движение и начать удаляться от Солнца. Такую резкую смену направления миграции часто называют сменой галса (the grand tack) из-за сходства с движением лавирующего парусника, идущего против ветра.

В 2011 г., через десять лет после рождения концепции смены галса, компьютерная модель Кевина Уолша (Kevin J. Walsh) и его коллег из Обсерватории Лазурного берега в Ницце (Франция) показала, что эта идея хорошо объясняет не только динамическую историю Юпитера и Сатурна, но и распределение каменистых и льдистых астероидов, а также малую массу Марса. Когда Юпитер мигрировал внутрь, своим гравитационным влиянием он захватывал и перемещал планетезимали на своем пути сквозь диск, сгребая и толкая их перед собой, как бульдозер. Если предположить, что Юпитер, прежде чем повернуть назад, мигрировал к Солнцу до расстояния нынешней орбиты Марса, то он мог перетащить ледяные блоки общей массой более десяти масс Земли в область землеподобных планет Солнечной системы, обогащая ее водой и другими летучими веществами. Этот же процесс мог создать четкую внешнюю границу у внутренней части протопланетного диска, прекратив рост ближайшего планетного эмбриона, который в результате стал тем, что сегодня мы называем Марсом.

Атака Юпитера

Несмотря на то что сценарий смены галса в 2011 г. выглядел весьма убедительным, его отношение к другим неразгаданным тайнам нашей Солнечной системы, таким как полное отсутствие планет внутри орбиты Меркурия, оставалось неясным. По сравнению с другими планетными системами, где плотно упакованы суперземли, наша кажется почти пустой. Неужели наша Солнечная система миновала важнейший этап формирования планет, который мы видим повсюду во Вселенной? В 2015 г. двое из нас (Константин Батыгин и Грегори Лафлин) рассмотрели, как бы могла повлиять смена галса на гипотетическую группу близких к Солнцу суперземель. Наш вывод оказался поразительным: суперземли не пережили бы смену галса. Замечательно, что миграциями Юпитера внутрь и наружу можно объяснить многие свойства планет, которые нам известны, а также и неизвестные.

Когда Юпитер погрузился во внутреннюю область Солнечной системы, своим «бульдозерным» влиянием на планетезимали он должен был нарушить их аккуратные круговые орбиты, превратив их в хаотический клубок пересекающихся траекторий. Некоторые планетезимали должны были сталкиваться с большой силой, разбиваясь на фрагменты, которые неизбежно порождали дальнейшие столкновения и разрушения. Таким образом, миграция Юпитера внутрь скорее всего вызвала каскад столкновений, который разрушал планетезимали, измельчая их до размера валунов, гальки и песка.

Под действием столкновительного трения и аэродинамического сопротивления в загазованной внутренней области протопланетного диска разрушенные планетезимали быстро теряли свою энергию и по спирали приближались к Солнцу. Входе этого падения они легко могли быть захвачены в новые резонансы, связанные с какой-либо из близких к ним суперземель.

Таким образом, смена галса Юпитера и Сатурна, возможно, вызвала мощную атаку на население первичных внутренних планет Солнечной системы. По мере того как бывшие суперземли падали на Солнце, они должны были оставлять за собой пустынную область в протопланетной туманности, простирающуюся до орбитальных периодов около 100 суток. В результате стремительный маневр Юпитера по молодой Солнечной системе привел к появлению довольно узкого кольца каменистых обломков, из которых через сотни миллионов лет сформировались планеты земной группы. Приведшее к этой тонкой хореографии стечение случайных событий указывает, что маленькие каменистые планеты типа Земли - а возможно, и сама жизнь на них - должны редко встречаться во Вселенной.

Модель Ниццы

К тому времени, когда Юпитер и Сатурн двинулись обратно из своего набега во внутреннюю часть Солнечной системы, протопланетный газово-пылевой диск уже сильно истощился. В конце концов резонансная пара- Юпитер и Сатурн - сблизилась с недавно сформировавшимися Ураном и Нептуном, а также, возможно, с еще одним телом подобного размера. С помощью гравитационных эффектов торможения в газе динамический дуэт захватил и эти меньшие гиганты в резонансы. Таким образом, когда большая часть газа ушла из диска, внутренняя архитектура Солнечной системы, вероятно, состояла из кольца каменистых обломков в окрестности нынешней орбиты Земли.

Во внешней области системы была компактная резонансная группа по меньшей мере из четырех планет-гигантов, движущихся по почти круговым орбитам между нынешней орбитой Юпитера и примерно половиной расстояния до нынешней орбиты Нептуна. В наружной части диска, за орбитой самой внешней планеты-гиганта, на дальнем холодном краю Солнечной системы двигались льдистые планетезимали. За сотни миллионов лет сформировались планеты земной группы, а некогда беспокойные внешние планеты пришли в состояние, которое можно было бы назвать стабильным. Однако это еще не было заключительным этапом эволюции Солнечной системы.

Смена галса и атака Юпитера вызвали последний всплеск межпланетного буйства в истории Солнечной системы, нанесли последний штрих, который привел планетную свиту нашего Солнца практически в ту конфигурацию, которую мы видим сегодня. Этот последний эпизод, названный поздней тяжелой бомбардировкой, произошел между 4.1 и 3,8 млрд лет назад, когда Солнечная система временно превратилась в тир. заполненный множеством сталкивающихся планетезималей. Сегодня шрамы от столкновений с ними видны в виде кратеров на поверхности Луны.

Работая с несколькими коллегами в Обсерватории Лазурного берега в Ницце в 2005 г., один из нас (Алессандро Морбиделли) создал так называемую модель Ниццы, чтобы объяснить, как взаимодействие между гигантскими планетами могло вызвать позднюю тяжелую бомбардировку. Там, где заканчивается смена галса, начинается модель Ниццы.

Близко расположенные друг к другу планеты-гиганты все еще двигались во взаимном резонансе и по-прежнему чувствовали слабое гравитационное влияние окраинных льдистых планетезималей. Фактически они балансировали на грани нестабильности. Накапливаясь за миллионы орбитальных оборотов в течение сотен миллионов лет, каждое незначительное по отдельности влияние внешних планетезималей понемногу меняло движение гигантов, медленно выводя из тонкого баланса резонансов, связывавшего их друг с другом. Переломный момент наступил, когда один из гигантов выпал из резонанса с другим, нарушив тем самым баланс и запустив серию взаимных хаотических возмущений планет, которые сдвинули Юпитер немного внутрь системы, а остальные гиганты - наружу. За короткое по космическим масштабам время в несколько миллионов лет внешняя область Солнечной системы пережила резкий переход от плотно упакованной, с почти круговыми орбитами к рассеянной и неупорядоченной конфигурации с движением планет по широким вытянутым орбитам. Взаимодействие между гигантскими планетами было настолько сильным, что одна или даже несколько из них, возможно, были выброшены далеко за пределы Солнечной системы, в межзвездное пространство.

Если бы динамическая эволюция на этом остановилась, то строение внешних областей Солнечной системы соответствовало бы той картине, которую мы видим у многих экзопланетных систем, где гиганты движутся вокруг своих звезд по эксцентрическим орбитам. К счастью, диск из льдистых планетезималей, вызвавший до этого беспорядок в движении планет-гигантов, позже помог его ликвидировать, взаимодействуя с их вытянутыми орбитами. Проходя поблизости от Юпитера и других планет-гигантов, планетезимали постепенно отбирали у них энергию орбитального движения и тем самым округляли их орбиты. При этом большинство планетезималей были выброшены за пределы гравитационного влияния Солнца, но некоторые остались на связанных орбитах, образовав диск из льдистого «мусора», который теперь мы называем поясом Койпера.

К настоящему времени известны многие гипотезы о происхождении Солнечной системы, в том числе предложенные независимо немецким философом И.Кантом (1724-1804) и французским математиком и физиком П.Лапласом (1749-1827). Точка зрения И. Канта заключалась в эволюционном развитии холодной пылевой туманности, в ходе которого сначала возникло центральное массивное тело - Солнце, а потом родились и планеты. П. Лаплас считал первоначальную туманность газовой и очень горячей, находящейся в состоянии быстрого вращения. Сжимаясь под действием силы всемирного тяготения, туманность вследствие закона сохранения момента импульса вращалась все быстрее и быстрее. Под действием больших центробежных сил, возникающих при быстром вращении в экваториальном поясе, от него последовательно отделялись кольца, превращаясь в результате охлаждения и конденсации в планеты. Таким образом, согласно теории П. Лапласа, планеты образовались раньше Солнца. Несмотря на такое различие между двумя рассматриваемыми гипотезами, обе они исходят от одной идеи - Солнечная система возникла в результате закономерного развития туманности. И поэтому такую идею иногда называют гипотезой Канта-Лапласа. Однако от этой идеи пришлось отказаться из-за множества математических противоречий, и на смену ей пришло несколько «приливных теорий».

Наиболее знаменитая теория была выдвинута сэром Джеймсом Джинсом, известным популяризатором астрономии в годы между Первой и Второй мировыми войнами. (Он также был ведущим астрофизиком, и лишь в конце своей карьеры обратился к созданию книг для начинающих.)

Рис. 1. Приливная теория Джинса. Звезда проходит рядом с Солнцем, вытягивая

из него вещество (рис. А и В); планеты формируются из этого материала (рис. С)

Согласно Джинсу, планетное вещество было «вырвано» из Солнца под воздействием близко проходившей звезды, а затем распалось на отдельные части, образуя планеты. При этом наиболее крупные планеты (Сатурн и Юпитер) находятся в центре планетной системы, где некогда находилась утолщенная часть сигарообразной туманности.

Если бы дела действительно обстояли таким образом, то планетные системы были бы чрезвычайно редким явлением, так как звезды отделены друг от друга колоссальными расстояниями, и вполне возможно, что наша планетная система могла бы претендовать на роль единственной в Галактике. Но математики снова бросились в атаку, и в конце концов приливная теория присоединилась к газообразным кольцам Лапласа в мусорной корзине науки. 1

2. Современная теория происхождения солнечной системы

Согласно современным представлениям, планеты солнечной системы образовались из холодного газопылевого облака, окружавшего Солнце миллиарды лет назад. Такая точка зрения наиболее последовательно отражена в гипотезе российского ученого, академика О.Ю. Шмидта (1891-1956), который показал, что проблемы космологии можно решить согласованными усилиями астрономии и наук о Земле, прежде всего географии, геологии, геохимии. В основе гипотезы О.Ю. Шмидта лежит мысль об образовании планет путем объединения твердых тел и пылевых частиц. Возникшее около Солнца газопылевое облако сначала состояло на 98% из водорода и гелия. Остальные элементы конденсировались в пылевые частицы. Беспорядочное движение газа в облаке быстро прекратилось: оно сменилось спокойным движением облака вокруг Солнца.

Пылевые частицы сконцентрировались в центральной плоскости, образовав слой повышенной плотности. Когда плотность слоя достигла некоторого критического значения, его собственное тяготение стало «соперничать» с тяготением Солнца. Слой пыли оказался неустойчивым и распался на отдельные пылевые сгустки. Сталкиваясь друг с другом, они образовали множество сплошных плотных тел. Наиболее крупные из них приобретали почти круговые орбиты и в своем росте начали обгонять другие тела, став потенциальными зародышами будущих планет. Как более массивные тела, новообразования присоединяли к себе оставшееся вещество газопылевого облака. В конце концов сформировалось девять больших планет, движение которых по орбитам остается устойчивым на протяжение миллиардов лет.

С учетом физических характеристик все планеты делятся на две группы. Одна из них состоит из сравнительно небольших планет земной группы - Меркурия, Венеры, Земли и Марса. Их вещество отличается относительно высокой плотностью: в среднем около 5,5 г/см 3 , что в 5,5 раза превосходит плотность воды. Другую группу составляют планеты -гиганты: Юпитер, Сатурн, Уран и Нептун. Эти планеты обладают огромными массами. Так, масса Урана равна 15 земным массам, а Юпитера- 318. Состоят планеты-гиганты главным образом из водорода и гелия, а средняя плотность их вещества близка к плотности воды. Судя по всему, у этих планет нет твердой поверхности, подобной поверхности планет земной группы. Особое место занимает девятая планета - Плутон, открытая в марте 1930 г. По своим размерам она ближе к планетам земной группы. Не так давно обнаружено, что Плутон - двойная планета: она состоит из центрального тела и очень большого спутника. Оба небесных тела обращаются вокруг общего центра масс.

В процессе образования планет их деление на две группы обусловливается тем, что в далеких от Солнца частях облака температура была низкой и все вещества, кроме водорода и гелия, образовали твердые частицы. Среди них преобладал метан, аммиак и вода, определившие состав Урана и Нептуна. В составе самых массивных планет - Юпитера и Сатурна, кроме того, оказалось значительное количество газов. В области планет земной группы температура была значительно выше, и все летучие вещества (в том числе метан и аммиак) остались в газообразном состоянии, и, следовательно, в состав планет не вошли. Планеты этой группы сформировались в основном из силикатов и металлов. 2

Возьми фломастер и нарисуй на надувном шарике несколько «галактик» разной формы. Когда шарик высохнет, начни его надувать — и ты увидишь, как «галактики» разбегаются. Чем больше шарик раздувается, тем дальше убегают они друг от друга. То же самое происходит и во Вселенной. Это одна из моделей, предложенных учеными для иллюстрации расширения Вселенной.

Миллиарды лет назад солнечная система начала своё формирование с образования газопылевого облака. Центром системы является Солнце, вокруг которого под силой тяготения движется огромное число других объектов - планет, астероидов, комет, метеоритов и крайне много космической пыли. Солнце настолько массивно, что по сути составляет большую часть массы всей системы.

Строение Солнечной системы

Всего в солнечной системе выделяют восемь планет. Так называемые планеты земной группы - Меркурий, Венера, Земля и Марс являются внутренними планетами, в отличии от четырех планет гигантов, которые отделены поясом астероидов - Юпитер, Сатурн, Уран и Нептун. Планеты земной группы в основном состоят из твердых веществ, в то время как внешние планеты - это в основном газовые планеты. Причем последние во много раз крупнее и массивнее.

Из-за чего именно образовался огромный пояс астероидов между внутренними и внешними планетами до сих пор остается загадкой, но ученые сходятся во мнение, что если бы не гравитационные поля Юпитера - то возможно они бы объединились в планету. Но догадок на этот счет очень много, некоторые даже считают, что пояс астероидов образовался из-за столкновения планеты с каким-то другим небесным телом.

Хотя строение солнечной системы казалось бы уже было изучено, однако ученые до сих пор вносят поправки, например в 2005 году была принята поправка в определении «что такое планета» из-за которой Плутон перестал быть планетой стал называться карликовой планетой, которых у солнечной системы довольно много.

Расположение планет Солнечной системы

Планеты в Солнечной системе располагаются по такой схеме:

Солнце > Меркурий > Венера > Земля > Марс > Пояс астероидов > Юпитер > Сатурн > Уран > Нептун

Происхождение Солнечной системы

Самая популярная версия состоит в том, что как и большинство галактик, планет и звезд, наша система образовалась после Большого взрыва, произошедшего 15 миллиардов лет назад. Огромное количество материи вырвавшееся наружу постепенно охлаждалось и образовывались космические тела, включая нашу галактику. Достоверно не известно в результате каких процессов, но около 5 миллиардов лет назад сгустки материи из пыли и газа, в результате действия силы притяжения начали сжиматься и крутиться друг вокруг друга. В центре этого действа и образовалось Солнце. Но внутри этого вихря начали объединяться другие части, образовывая «уплотнения», которые в дальнейшем и стали планетами.

Но все же происхождение солнечной системы до сих пор достоверно не изучено, потому что существуют некоторые загадки и нестыковки в теориях ученых, например не совсем понятно почему Венера вращается в другую сторону, относительно других планет. На этот счет есть гипотезы о том, что она столкнулась со своим спутником и он изменил направления её движения, но убедительных доказательств этому так и нет.

Солнечная система видео презентация: