Виды, состав и способы нанесения полиэфирных красок. Полиэфирная Эпоксидные порошковые краски

В качестве сырья для изготовления изделий, наша компания использует сталь с различными видами полимерных покрытий. Покрытия наносятся на заводах - изготовителях сырья, на сложном технологическом оборудовании. Оцинкованный лист покрывается фосфатным антикоррозионным слоем, затем для улучшения адгезии наносится грунтовка и покрывается с тыльной стороны защитным лаком, а с наружной - полимерным покрытием (полиэстер, матовый полиэстер, пластизол, ПВДФ, пурал, полиуретан) к тому же имеющее определенный цвет. Так же возможны варианты изготовления изделий из материала имеющего двустороннее полимерное покрытие.

Внешний вид и долговечность материалов из оцинкованной стали зависят от полимерного покрытия, предохраняющего ее от агрессивного воздействия среды. Покрытие наносится в заводских условиях по специальным технологиям.

Антикоррозионные свойства оцинкованной стали с полимерным покрытием, зависят от толщины цинкового слоя. Сталь с полимерным покрытием и массой цинкового слоя 275 г на кв. м прослужит до появления первых признаков коррозии черного металла на 5-7 лет дольше, чем сталь с массой цинкового слоя 180 г на кв. метр. Слой цинка без покрытия с годами смывается с крыши обыкновенной дождевой водой. Поэтому стальной лист, из которого делают фасадные и кровельные материалы, (металлочерепицу, профнастил, металлосайдинг, отливы , доборные элементы кровли) дополнительно покрывают двумя защитными слоями полимера с лицевой стороны и лака с тыльной стороны. Имеются материалы с двухсторонним полимерным покрытием.

Рассмотрим распространенные покрытия:

Технические характеристики

Полиэстер

Матовый полиэстер

Пластизол

Поверхность

тиснение

Толщина покрытия,мкм

Толщина слоя грунтовки,мкм

Толщина защитного лака (тыльная сторона),мкм

Максимальная температура эксплуатации,град.

Минимальная температура обработки,град.

Минимальный радиус изгиба

Цветостойкость

Устойчивость к механическим повреждениям

Коррозийная стойкость

Атмосферостойкость

ОЦИНКОВАННАЯ СТАЛЬ

ОЦИНКОВАННАЯ СТАЛЬ - сталь имеющая защитное покрытие из цинка. В производстве изделий применяется оцинкованная сталь специальных конструкционных марок стали (S250GD, S280GD) ведущих мировых комбинатов с толщиной слоя цинка 18-20мкр с каждой стороны (275 г на м2). Благодаря этому изделия оптимально подходят для строительства и обладают непревзойденной долговечностью. В России продаются изделия для кровельных покрытий из стали, покрытой более тонким слоем цинка (140-200 г цинка на кв. м). Профнастил, отливы и доборные элементы из такой стали подходят в тех случаях, когда срок службы кровли и элементов рассчитан на 10-20 лет.

Aluzinc ®

Aluzinc ® - сталь имеющая защитное металлическое покрытие, состоящее на 55% из алюминия, на 43,4% из цинка и на 1,6% из кремния. Толщина алю-цинкового покрытия 20 мкм (150г/м2) Алюминий, благодаря появляющейся на покрытии оксидной пленке, на порядок повышает коррозионную стойкость материала изделий. Кроме того, изделия с покрытием из Aluzinc® практически не меняют свой внешний вид в процессе эксплуатации. Именно благодаря оксидной пленке, Aluzinc ® имеет высочайшую коррозионную стойкость и неизменность внешнего вида. Проведенные тесты на открытом воздухе показали, что после 30 лет эксплуатации, подвергаясь различным условиям окружающей среды, на материале не появляется никаких следов ржавчины. Высокая коррозионная стойкость позволяет применять изделия из Aluzinc ® на крышах, с углом наклона менее 5 градусов.

  • Aluzinc ® не темнеет в отличие от оцинкованной стали.
  • Аluzinc ® не выцветает и не царапается.
  • Aluzinc ® Благодаря 100% металлическому покрытию, обладает пользующимся большим спросом натуральным серебристым блеском.

Aluzinc ® также вносит свой вклад в процесс контроля климата внутри здания, обладая великолепным теплоотражающим свойством, что придает Aluzinc ® характеристики теплового защитного экрана. Рекомендуем использовать профилированные изделия из Aluzinc ® в качестве облицовки (стеновой профнастил и сайдинг). Aluzinc ® делает здание ярким, привлекательным и долговечным. С точки зрения жаростойкости Aluzinc ® имеет преимущество среди металлических покрытий, он не выделяет ядовитых паров, не воспламеняется и не загорается.

Полиэстер (PE)

ПОЛИЭСТЕР (PE) - покрытие на основе полиэфира. Изделия с этим покрытием выдерживает высокую температуру воздуха, и большую стойкость к коррозии. Материал прочен и достаточно долговечен: кровля из стальных листов, покрытых полиэстером, может исправно прослужить 20-30 лет. Гарантийный срок - 10 лет. Своей популярностью полиэстер обязан высокой стойкостью к атмосферным воздействиям, эстетичностью, хорошими показателями цветостойкости, пластичностью, долговечностью, огромным выбором цветовых решений и все это по вполне приемлемым ценам. В России данный материал активно используется для изготовления кровельных и стеновых конструкций, причем как в частном, так в многоэтажном и промышленном строительстве. Широкая область применения стали с покрытием полиэстер обуславливается в первую очередь тем фактом, что данное покрытие подходит для любых климатических условий. Изделия из оцинкованной стали с покрытием полиэстер - это гарантия долговечности и высокой коррозионной стойкости, широкая цветовая гамма, многоцелевая область применения, приемлемая цена.

карта цветов покрытий

МАТОВЫЙ ПОЛИЭСТЕР (PEMA)

МАТОВЫЙ ПОЛИЭСТЕР (PEMA) - покрытие на основе полиэфира.. Это покрытие выбирают люди, которым не нравится, когда крыша блестит. Если провести по матовому полиэстеру рукой, он покажется бархатистым. Причина в том, что его поверхность не гладкая, как у остальных покрытий, а испещрена микроскопическими неровностями. Солнечный свет, отражаясь от него, становится рассеянным. Поэтому покрытие матовое. Так как точно установить, какова толщина покрытия, в этом случае невозможно, его на всякий случай наносят толстым слоем, про запас. Поэтому срок службы у него больше, чем у покрытия «полиэстер», хотя химический состав тот же. Срок службы - 40 лет. Гарантийный срок - 15 лет.
Материал обладает высокой цветостойкостью и механической стойкостью, сохраняет свои качества в любом климате. Оригинальное покрытие на основе полиэстера, благодаря бархатистой поверхности очень точно имитирует натуральные материалы.
Матовый полиэстер имеет привлекательную текстуру. За счет матовой, а не глянцевой поверхности, как у традиционного полиэстера, достигается имитация натуральных материалов. Повышенная стойкость к химическому воздействию и хорошие механические характеристики матового полиэстера достигается за счет толщины покрытия - 35 мкм.

Выбрать необходимый цвет Вам поможет - карта цветов покрытий

PVDF

PVDF - покрытие состоящее из поливинилфторида (80%) и акрила (20%). Самое стойкое полимерное покрытие стали к любым немеханическим воздействиям окружающей среды. Изделия из PVDF рекомендуется применять для облицовки стен, так как именно в стеновых панелях покрытие PVDF наилучшим образом проявит свои характеристики и обеспечит наиболее долгий срок эксплуатации. PVDF гарантирует долговечную сохранность кровли и стеновой облицовки. PVDF - самое экологичное покрытие, не выцветает со временем и обеспечивает повышенную стойкость к коррозионному воздействию воды, снега, кислот и щелочей. Максимальная температура эксплуатации +120 градусов, минимальная -50 0 С. Цвет облицовки или кровли вашего дома, если он сделан из стали с покрытием PVDF, со временем не потускнеет и не выгорит на солнце.
Если ваше помещение находиться в промышленной части города, вблизи дорог, возле озер или на морском побережье, если вы строите или облицовываете помещение химического производства, стены которого будут часто мыться водой или дезрастворами, то лучшим материалом для Вас тоже будет сталь с покрытием PVDF.
Оцинкованная сталь с покрытием PVDF производства Corus выпускается как стандартных цветов, по каталогу RAL так и цветов, имитирующих натуральные металлы - алюминий, медь, золото.

ПЛАСТИЗОЛ (PVC)

ПЛАСТИЗОЛ (PVC) - полимер, состоящий из поливинилхлорида и пластификаторов. Благодаря большой толщине (0,2 мм) это покрытие - самое устойчивое к механическим повреждениям, обладает высокой коррозионной стойкостью, что создает дополнительную защиту в условиях загрязненной окружающей среды или на морском побережье, однако оно обладает сравнительно низкой температурной стойкостью и быстро выцветает на солнце. Рекомендуется применять светлые цвета пластизола, которые меньше выгорают, нагреваются и лучше отражают свет. Покрытие имеет рельефную поверхность - тиснение, имитирующее кожу или штриховую насечку, которое не дает солнечных бликов.

Выбрать необходимый цвет Вам поможет - карта цветов покрытий

ПОЛИУРЕТАН (PU)

ПОЛИУРЕТАН (PU) - такое покрытие делают из полиуретана, модифицированного полиамидом и акрилом. Полиамид придает ему отличную стойкость к ультрафиолетовому излучению, а акрил обеспечивает высокую прочность. Имеет шелковисто-матовую поверхность. Долговечность материала складывается из высокой коррозионной стойкости, стойкости к негативному воздействию ультрафиолета, и непревзойденной стойкости к механическим повреждениям. Номинальная толщина покрытия - 50 мкм. Кроме того, полиуретан имеет очень высокую стойкость к воздействию многих кислот, т.е. химических веществ, характерных для промышленной атмосферы. Результаты теста на стойкость солевому туману подтверждают, что долговечность материалов с полиуретановым покрытием сохраняется и в условиях морского климата.
При обработке и гибке в условиях низких температур, материал не образует микротрещин в местах сгибов. Это покрытие является более долговечным, чем полиэстер. Срок службы - 30-50 лет. Гарантийный срок - 15 лет.
Покрытие на основе полиуретана, получило широкое распространение в России, благодаря своему английскому аналогу. Colorcoat Prisma производится в Англии, одним из крупнейших в мире металлургических концернов Corus. Сталь с покрытием Prisma имеет защитный слой Galvalloy состоящий из 95% цинка и 5% алюминия, обеспечивающий непревзойденную антикоррозионную защиту материала. Изделия, изготовленные с покрытием Prisma, имеют высочайшую стойкость к ультрафиолету и механическому воздействию.

сайт 2009


Полиэфирные покрытия, армированные стекловолокном, требуют сухой, нейтрализованной (например, при помощи флюатиро-вания) бетонной основы. При 20 С они обнаруживают хорошую химическую стойкость в воде, разбавленных и среднеконцен-трированных растворах неорганических и органических кислот, растворах солей, имеющих кислую или щелочную реакцию, бен - N зине и минеральных маслах. С ростом температуры агрессивных сред химическая стойкость покрытий уменьшается.
Полиэфирные покрытия отличаются от всех других прозрачностью, твердостью, зеркальным блеском. Близки к ним поли-уретановые покрытия.
Полиэфирные покрытия, армированные стекловолокном, требуют сухой, нейтрализованной (например, при помощи флюатиро-вания) бетонной основы. При 20 С они обнаруживают хорошую химическую стойкость в воде, разбавленных и среднеконцен-трированных растворах йеорганических и органических кислот, растворах солей, имеющих кислую или щелочную реакцию, бензине и минеральных маслах. С ростом температуры агрессивных сред химическая стойкость покрытий уменьшается.
Полиэфирные покрытия имеют хорошую адгезию к древесине и бумаге; они отличаются блеском и прозрачностью, стойкостью к действию воды, спирта, жиров и низких температур.
Полиэфирные покрытия отличаются высокими механическими показателями, которые сохраняются при повышенных температурах. Полиэфирная пленка на основе лака ПЭ-943 обеспечивает хорошие электрические свойства. Так, ее удельное объемное сопротивление составляет 1 5 - 1015 - 5 3 - Ю15 Ом-см и не снижается после действия воды. Электрическая прочность в исходном состоянии равна 100 кВ / мм и мало изменяется при 200 С и после действия воды.
Полиэфирные покрытия отличаются хорошей адгезией к древесине, бумаге и некоторым другим материалам, блеском и прозрачностью, стойкостью к действию воды, спирта и бензина; они могут быть легко окрашены во все цвета.
Полиэфирные покрытия отличаются высокой механической прочностью, твердостью, блеском и стойкостью к действию воды, бензина, масла и разбавленных кислот.
Полиэфирным покрытиям присуща большая твердость, сильный блеск, удовлетворительная прочность на истирание. Однако они плохо сопротивляются ударным нагрузкам и малоэластичны; используются главным образом при окраске деревянных (и бетонных) поверхностей, адгезия полиэфирных лаков к металлам невысокая.
Кинетика изменения внутренних напряжений при эксплуатации покрытий из ПЭ-219 на различных подложках. 1 - береза. 2 - ясень. 3 - красное дерево. 4 - древесностружечная плита.| Кинетика изменения внутренних напряжений при эксплуатации покрытий из ПЭ-219 на различных подложках, обработанных порозаполнителем. Для полиэфирных покрытий, сформированных на ясене, с запасом адгезионной прочности более 4, с уменьшением толщины покрытий с 1200 до 300 мкм долговечность возрастает более чем в 2 раза. При малой начальной величине внутренних напряжений в покрытиях и небольшом запасе адгезионной прочности долговечность покрытий с уменьшением толщины покрытий возрастает в меньшей степени. В покрытиях толщиной 400 - 500 мкм, сформированных на древесине, нарушение адгезионной прочности при эксплуатации в атмосферных условиях наблюдается при величине критических внутренних напряжений, в 5 - 10 раз меньшей, чем в процессе формирования.
У полиэфирных покрытий, сформированных на древесных породах, наиболее широко применяемых в промышленности, внутренние напряжения, измеренные поперек волокон, всегда значительно больше напряжений вдоль волокон.
Благодаря однослойному полиэфирному покрытию, нанесенному толщиной 1 25 - 1 5 мм на водопроводные асбоцементные трубы, обеспечивается их газонепроницаемость при давлении до 0 5 МПа, а при двухслойном покрытии - при давлении до 0 7 - 1 МПа. Оно имеет высокую механическую прочность, истираемость, стойкость к агрессивным средам, бензину, природным и сжиженным газам, но обладает недостаточной стойкостью к длительному воздействию слабоминерализованной воды. Поэтому в состав покрытия вводят специальные добавки, повышающие его водостойкость.
Эпоксидные или полиэфирные покрытия, армированные стекловолокном, получаются при наложении на бетонную основу нескольких слоев эпоксидных или полиэфирных смесей, между которыми закладывается внутренний слой, представляющий из себя маты или ткань из стекловолокна. Такие покрытия отличаются хорошим сцеплением с сухой поверхностью бетона, большой механической прочностью, хорошим сопротивлением истиранию и отсутствием поглощения жидкостей даже под большим давлением.
Эпрксидные или полиэфирные покрытия, армированные стекловолокном, получаются при наложении на бетонную основу нескольких слоев эпоксидных или полиэфирных смесей, между которыми закладывается внутренний слой, представляющий из себя маты или ткань из стекловолокна. Такие покрытия отличаются хорошим сцеплением с сухой поверхностью бетона, большой механической прочностью, хорошим сопротивлением истиранию и отсутствием поглощения жидкостей даже под большим давлением.
При формировании полиэфирных покрытий наибольшее число функциональных групп расходуется на первой стадии полимеризации на образование надмолекулярных структур, характер которых зависит от природы подложки, условий формирования и толщины покрытий. На этой стадии пленкообразования полимеризация протекает главным образом внутри надмолекулярных структур. Это приводит к возникновению индукционного периода в изменении теплофизических параметров, внутренних напряжений и других физико-механических свойств покрытий.

Облагораживание поверхности полиэфирных покрытий путем шлифования и полирования их поверхности широко применяется для улучшения декоративных свойств покрытий. Эти операции входят в технологический цикл получения полиэфирных покрытий, предусматривающий удаление всплывающих добавок парафина, недостаточно отвержденных слоев и придания блеска поверхности. Качество проведения этой операции обычно оценивается визуально.
Кинетика усадки полиэфирных пленок при 80 С и при последующем охлаждении до 20 С, армированных различными материалами. При армировании полиэфирных покрытий волокнистыми наполнителями - стеклянными холстами, представляющими собой - сетку из коротких перепутанных волокон; усадка при полимеризации не проявляется, а наблюдается некоторое увеличение размера образцов. В процессе охлаждения армированных пленок усадка нарастает до некоторого постоянного значения.
Кинетика нарастания внутренних напряжений при формировании полиэфирных покрытий.| Зависимость внутренних напряжений (/ и прочности при разрыве (2 от содержани модифицированного ОДА (а и немодифицированного аэросила (б. При наполнении полиэфирных покрытий аэросилом, модифицированным окта-дециламином, скорость формирования практически не изменяется по сравнению с ненаполненными покрытиями. Это обусловлено экранированием поверхности аэросила группами NH модификатора. С увеличением содержания аэросила внутренние напряжения увеличиваются более чем в 2 раза, при этом прочность пленок на разрыв соответственно уменьшается, а адгезия покрытий к стеклу увеличивается. Эффект резкого понижения адгезии и внутренних напряжений при формировании полиэфирных покрытий наблюдается не только в присутствии модификатора на поверхности аэросила, но и при непосредственном формировании покрытий на поверхности подложки, модифицированной октадециламином. При полном модифицировании поверхности подложки адгезия снижается более чем на порядок, при этом соответственно наблюдается и резкое уменьшение внутренних напряжений. Обращает на себя внимание и тот факт, что понижение внутренних напряжений при непосредственном нанесении покрытий на модифицированную подложку значительно больше, чем при формировании покрытий на немодифицированной подложке в присутствии модифицированного аэросила.
При формировании полиэфирных покрытий наибольшее число групп расходуется на первой стадии на формирование надмолекулярных структур, характер которых зависит от природы подложки, условий формирования и толщины покрытий, и полимеризация идет главным образом внутри надмолекулярных структур. Это приводит к возникновению индукционного периода в изменении внутренних напряжений и теплофизиче-ских параметров при формировании покрытий. На второй стадии формирования происходит установление связей между этими структурами.
Структура полиэфирных блоков (а, г и покрытий (б, в, сформированных при 80 С, выявленная методом срезов. в, г - с кислородным травлением. Изучена микроструктура полиэфирных покрытий, полученных из 25 % - ных растворов олигоэфирмалеинатов в ацетоне. В таких оли-гомерных системах методом быстрого замораживания выявлены отдельные глобулярные ассоциаты. При воздействии электронного пучка в течение 5 мин в пленке практически не выявляется структура. При воздействии электронного пучка в течение 15 мин выявляется тонкая глобулярная структура, аналогичная структуре, обнаруженной методом срезов (см. рис. 3.11) в отвержденных покрытиях. При последующем облучении наблюдается агрегация структурных элементов с образованием более крупных надмолекулярных структур. Через 20 - 25 мин формирования наряду с глобулярными обнаруживаются полосатые структуры. Через 30 мин облучения наблюдается растрескивание пленки, при этом происходит смещение одного слоя покрытия относительно другого, что обусловлено различной структурой слоев по толщине пленки.
При снятии полиэфирного покрытия лучший эффект достигается при использовании смывки СМ-2 и Автосмывки, при снятии полиуретанового покрытия - смывок СМ-2 и БЭМ-2. Покрытия после разрушения удаляют шпателем, а затем остатки нитратцеллюлозного покрытия - растворителем 646, а остатки полиэфирного и полиуретанового покрытий - уайт-спиритом. Все эти смывки по эффективности удаления полиурета новых покрытий существенно уступают приведенному выше американскому составу [ пат.
Для отперждення полиэфирных покрытий применяют различные мономеры (стирол, метилметакрилат, хлорстирол и др.), которые сополимеризуются с полиэфирами, или реакци-онноспособные олигомеры, например олигоэфиракрилаты, применяемые в качестве растворителей полиэфиров.
Для полирования нитролаковых, нитроэмалевых, ал-кидных, полиэфирных покрытий используют полировочные пасты (Г 2 восковая, № 290, 291, 300), восковой полирующий состав № 3 и др.; шеллачные и другие смоляные лаковые покрытия полируют шеллачной политурой.
Для улучшения свойств полиэфирных покрытий применяют добавки различного назначения: для придания тиксотропных свойств-аэросил и эфиры целлюлозы, для улучшения розлива-силиконовые жидкости, для пластификации - ре - зиловьге олигомеры и др. Для повышения стабильности при хранении к полуфабрикатному лаку добавляют также ингибитор полимеризации-гидрохинон. Полуфабрикатные лаки поставляют в комплекте с раствором инициатора, который вводится перед употреблением.
При исследовании твердости полиэфирных покрытий установлено , что их твердость достигает предельного значения задолго до окончания процесса формирования покрытий вследствие большей скорости удаления растворителя и протекания окислительных процессов в поверхностном слое. В противоположность этому при формировании покрытий на основе ненасыщенных олигоэфиров, процесс полимеризации которых ингибируется кислородом воздуха, возможно более медленное нарастание твердости поверхностных слоев по сравнению с твердостью покрытия в целом. Кроме того, метод измерения твердости не позволяет контролировать начальную стадию процесса.
При увеличении толщины полиэфирных покрытий происходит линейное нарастание внутренних напряжений как в подложке на границе с пленкой, так и в покрытиях на деревянных подложках.
К операциям облагораживания полиэфирных покрытий также предъявляются некоторые специфические требования. Полиэфирное покрытие, представляющее собой нерастворимый в органических растворителях трехмерный полимер, не может подвергаться разравниванию, поэтому шлифование полиэфирных покрытий должно производиться только тонкими шкурками.

Для скоростного облагораживания нитроцеллюлозных и полиэфирных покрытий УралВНИИАШем разработана и внедрена в производство шлифовальная шкурка улучшенного качества на бумажной основе из карбида кремния зернистостью 6 - 4 особого гранулометрического состава; связка - мездровый клей. Оптимальный гранулометрический состав узко классифицированных по зернистости шлифовальных порошков, полученных в результате дополнительной виброклассификации абразивного материала, дает возможность снизить удельный расход шкурки и повысить производительность.
Пленки, нанесенные на стекловолокнистые, хлопковые, найло-новые, полиэфирные покрытия или на нетканые материалы из синтетических волокон. Такие структуры несут на себе или сухое, или частично липкое связующее. При контакте со склеиваемым материалом часть связующего остается на нем.
Испытания на тйердость для полиэфирных покрытий проводят в помещении при температуре воздуха 15 - 30 С, для нитроцеллюлозных - 18 - 25 С.
Наиболее эффективный метод нанесения полиэфирного покрытия на сухую внутреннюю поверхность труб - центробежный метод, при котором полимерный состав, заливаемый вовнутрь трубы, распределяется равномерным слоем на поверхности в процессе вращения трубы со скоростью 450 - 500 об / мин в течение 1 - 2 мин и при этом уплотняется. Создана заводская установка для нанесения полиэфирного покрытия труб этим методом. Перед нанесением покрытия трубы очищают металлическими щетками, а затем продувают сжатым воздухом при давлении 0 6 МПа. Отверждение покрытия после нанесения осуществляется на стеллажах при комнатной температуре.
Так, на примере парафинсодержащих полиэфирных покрытий, отверждаемых стиролом, установлено [ 18, с.
Монолитные эпоксидные, полиуретановые и полиэфирные полиуретановые и полиэфирные покрытия полов.
Зависимость логарифма длительной адгезионной прочности полиэфирных покрытий из лака ПЭ-219 на древесине от величины внутренних напряжений является линейной. Покрытия из этого лака, имеющие запас адгезионной прочности (А: авн 2) не отслаиваются при испытании их в атмосферных условиях в течение 2 лет и более. Аналогичное влияние природы подложки на долговечность покрытий обнаруживается и при других условиях эксплуатации. Так, при испытании ускоренными методами было установлено, что долговечность покрытий, сформированных на красном дереве и березе, на порядок ниже долговечности покрытий на ясене и древесностружечной плите.
Был изучен процесс формирования полиэфирных покрытий на деревянных подложках из-за все более возрастающего применения полиэфирных покрытий в различных отраслях промышленности для отделки древесины и отсутствия критериев, позволяющих выбрать и оценить оптимальные технологические условия их получения. Показано, что процесс формирования покрытий на древесине имеет ряд своих специфических особенностей.
Значительное влияние на физико-механические свойства армированных полиэфирных покрытий оказывает структура стеклянного холста, характер переплетения и толщина волокон, а также природа их поверхности. Для покрытий, армированных более жестким холстом ХЖК, обработанным парафиновой эмульсией, внутренние напряжения значительно меньше по сравнению с внутренними напряжениями в неармированных наполненных покрытиях. В табл. 6.4 приведены данные о влиянии наполнителей на механические свойства полиэфирных покрытий, армированных стеклянным холстом ВВ.
Влияние наполнителей на механические свойства полиэфиров. Это объясняется тем, что адгезия полиэфирных покрытий к цементу и древесине значительно больше, чем к кварцевому песку. Следовательно, внутренние напряжения в наполненных покрытиях повышаются с увеличением прочности взаимодействия между связующим и частицами наполнителя.
Влияние минеральных наполнителей на механические и адгезионные свойства полиэфирных покрытий, армированных стеклянным холстом ХЖК. Широкое применение для улучшения эксплуатационных свойств полиэфирных покрытий находят холсты, которые в отличие от лент и тканей характеризуются беспорядочным расположением волокон.
Фланцевые соединения аспирационных воздуховодов участков шлифования полиэфирных покрытий следует оборудовать специальными токопроводящими перемычками, обеспечивающими надежный электрический контакт. В помещениях окрасочных цехов необходимо предусматривать установку автоматических газоанализаторов, предупреждающих о возникновении в воздухе взрывоопасных концентраций растворителей.
Кинетика нарастания прочности на сдвиг 0Т (1, внутренних напряжений Овн (2, прочности на разрыв сгр (3 и модуля упругости Е (4 при формировании покрытий из олигоэфирмалеинатов при 20 (а и 80 С (б.
Напряжения, возникающие в процессе отверждения полиэфирных покрытий, составляют небольшую величину. Резкое нарастание внутренних напряжений наблюдается при охлаждении покрытий, подвергнутых термическому отверждению.
Зависимость долговечности покрытий из ПЭ-220 от природы под.| Зависимость долговечности покрытий из ПЭ-220 от внутренних на. Была изучена временная зависимость адгезионной прочности полиэфирных покрытий на основе ненасыщенных полиэфиров, отвержденных стиролом и триэтиленгликолевым диэфиром метакриловй кислоты и сформированных на различных подложках, а также алкидных покрытий. Временная зависимость адгезионной прочности покрытий из олигоэфирмалеинатов от величины внутренних напряжений получена при формировании покрытий при 18 С. Величина предельных критических напряжений, вызывающих самопроизвольное отслаивание покрытий, определялась путем прогрева образцов в течение 10 ч при80 С через различные промежутки времени.
Поточно-механизированные и автоматические линии по облагораживанию лакокрасочных полиэфирных покрытий (наиболее современные) имеют проходные станки для шлифования кромок, один или два проходных станка для шлифования пласти с взаимоперекрещивающимися шлифовальными лентами, многобарабанные (шесть или восемь) полировальные станки, соединенные между собой транспортными средствами. Производительность линий определяется скоростью подачи и обычно находится в диапазоне 3 - 12 м / мин.
Схема терморадиационной сушильной камеры с обогревом источников инфракрасных лучей горячими газами.| Схемы камер фотохимического отв ерждения покрытий источниками низкого (а и высокого (б давления. Преимущества этого способа в том, что полиэфирные покрытия сначала полимеризуются медленно, на поверхность выплывает парафин. По такому принципу работает фотохимическая сушильная камера СФХ-2М, которая состоит из металлического каркаса, пластинчатого конвейера и светильников.
Кинетика нарастания и релаксации внутренних напряжений при формировании покрытий на поверхности стекла при 80 С, модифицированного различными соединениями (. Величина адгезии и внутренних напряжений при формировании полиэфирных покрытий на поверхности подложки, модифицированной соединениями третьего класса, зависит от природы заместителей в фенильном кольце. С ростом электроотрицательности заместителя в ряду (C2H5) 2N, H, СН3О и увеличением расстояния между активными центрами внутренние напряжения понижаются больше, чем адгезия. Для выяснения причины этого явления была исследована структура поверхности подложки и покрытий в пограничном слое.
Влияние ПАВ на физико-механические свойства ненасыщенных полиэфиров.| Структура покрытий из исходного полиэфира (а и полиэфира, модифицированного 4 % ОДА (б. Об этом свидетельствуют данные о возникновении для полиэфирных покрытий, модифицированных ПАВ, полосы поглощения в области 3500 см 1, характерной для водородных связей. В процессе отверждения интенсивность этой полосы возрастает. Уменьшение межмолекулярного взаимодействия и упорядочение структуры молекул ненасыщенного полиэфира при оптимальном содержании ПАВ приводит к изменению морфологии надмолекулярных структур, возникающих в процессе полимеризации. На рис. 3.8 приведены реплики с поверхности полиэфирных покрытий, немодифицированных и модифицированных ПАВ, снятые на электронном микроскопе. Образцы предварительно подвергали кислородному травлению. Как видно из рисунка, в покрытиях из немодифицированной смолы возникает сетка из надмолекулярных структур глобулярного типа. При введении 1 % ОДА наблюдается структура в виде глобулированных пачек с микропористостью в центре. При увеличении концентрации ОДА до 2 % обнаруживается неполное разворачивание глобул, а при концентрации 3 - 4 % для покрытий характерна полосатая структура. Последующее увеличение ПАВ до 6 % приводит к формированию крупных структур полосатого типа.
При этом теплофизические свойства с изменением толщины полиэфирных покрытий изменяются антибатно внутренним напряжениям (рис. 2 - 2), в то время как теплофизические свойства свободных пленок не зависят от их толщины.
В Советском Союзе разработан фотохимический способ отверждения полиэфирных покрытий. Однако недостаток его заключается в том, что в отверждаемые системы необходимо дополнительно вводить фотосенсибилизаторы, время отверждения покрытий относительно велико - до 5 мин; метод неприемлем для пигментированных систем.
При введении немодифицированного аэросила внутренние напряжения в полиэфирных покрытиях возрастают более чем в 2 раза, при этом прочность пленок при разрыве соответственно уменьшается, а адгезионная прочность к стеклу увеличивается. При неполном модифицировании поверхности аэросила октадециламином резкое понижение внутренних напряжений и адгезионной прочности наблюдается только при большой степени наполнения, в то время как при полном заполнении поверхности аэросила модификатором эти же параметры понижаются в 3 - 4 раза.
Значительное влияние на величину внутренних напряжений в полиэфирных покрытиях оказывает порода древесины. Были получены данные о зависимости внутренних напряжений от толщины полиэфирных покрытий, сформированных на поверхности образцов, фанерованных древесиной различных пород.
Кинетические данные об изменении внутренних напряжений в полиэфирных покрытиях на подложках из древесины различных пород в процессе старения в атмосферных условиях показывают, что эта зависимость является немонотонной. Наибольшая релаксация внутренних напряжений наблюдается в наиболее влажные месяцы эксплуатации покрытий и связана, вероятно, с пластифицирующим действием влаги. При последующей эксплуатации покрытий внутренние напряжения возрастают, не достигая своей первоначальной величины. Резко выраженное необратимое изменение внутренних напряжений в процессе эксплуатации отмечено для покрытий, сформированных на красном дереве и обусловлено локальным отслаиванием их в местах концентрации внутренних напряжений.

Кинетические данные об изменении внутренних напряжений в полиэфирных покрытиях из лака ПЭ-219 на подложках из дерева, обработанных порозаполнителем КФ-1, в процессе старения в атмосферных условиях показали, что необратимое уменьшение внутренних напряжений в этом случае составляет 75 - 85 % и обусловлено, вероятно, локальным разрушением адгезионных связей. Было изучено также влияние на внутренние напряжения и адгезионные свойства полиэфирных покрытий различных композиций, модифицирующих поверхность древесины.

Порошковые лакокрасочные материалы начали применяться в начале 50-х годов в США, и с тех пор потребность в этих материалах постоянно возрастает. В 2000 г. мировое производство порошковых красок в мире оценивалось в 720 тыс. тонн, в 2003 г. составило 875 тыс. тонн. По прогнозам западных экспертов к 2008 г. оно составит до 1 млн. 220 тыс. тонн. При этом доля порошковых красок достигнет 18% от всего объема производимых ЛКМ.

За 40 лет порошковые краски (ПК ) широко внедрились во все сферы нашей жизни. Ими окрашивают холодильники, посуду, садовый и хирургический инструмент, фурнитуру, мебель (садовая , офисная, медицинская, кухонная), пылесосы, стиральные машины, микроволновые печи, научные приборы, электро и слесарный инструмент, станки, компьютеры, полупроводники, кондиционеры, велосипеды, мотоциклы, автомобили, киоски, витрины магазинов и музеев, сельхозмашины, воздушные и морские суда, буровой инструмент и трубы (водопроводные , газовые, нефтяные диаметром от 10 мм до 2 м), насосы для всех видов жидкостей, включая высокоагрессивные, элементы архитектуры и крыши, электро, радио и бытовые приборы, игрушки, микроэлектродвигатели и космические станции и многое другое.

Широким распространением порошковые краски обязаны прежде всего тому, что они не содержат растворителей и на 100% состоят из веществ, которые при отверждении превращаются в тонкослойное, практически непроницаемое для влаги, кислорода, кислот, солей и других химических веществ высокопрочное и твердое абразивостойкое покрытие со сроком службы, превышающим порой срок службы окрашенного изделия.

Порошковые краски имеют перед традиционными органорастворимыми следующие преимущества:

Готовность к употреблению

Порошковые краски всегда поставляются в виде смеси, готовой к употреблению и не нуждаются в разведении или иной подготовке.

Отсутствие растворителя

Порошковая краска не содержит растворителя или летучих веществ, что позволяет серьезно снизить риск возникновения пожара, устранить проблему утилизации растворителя, и свести к минимуму вредное воздействие на обслуживающий персонал.

Низкий процент отходов

Полнота использования порошковой краски принанесении достигает 98%. Краска, не попавшая на изделие, может быть возвращена и использована повторно при покраске. При использовании жидких красок до 60% ее теряется при нанесении за счет испарения растворителя.

Снижение затрат

Технология получения порошкового покрытия обеспечивает экономию материалов (использование ПК на 93-97%), энергии (используемый объем воздуха обновляется два раза в час вместо 15 раз/ч при традиционных методах окраски), производственных площадей (уменьшение на 30%) и затрат труда (на 40-50%).

Технологичность

Порошковая краска более проста при нанесении и нет необходимости в привлечении высококвалифицированного персонала. Технология окрашивания позволяет получить требуемую толщину пленки от 35 до 250 микрон при нанесении в один слой.

Улучшенные свойства

Порошковые краски позволяют получать покрытия, обладающие высокими физико-механическими, защитными и декоративными свойствами при наличии широкой цветовой гаммы и эффектов ( «металлики » и покрывные лаки различных цветов, структурированные поверхности (мелкая и крупная структура, «эффект кожи», «антики », «муар »), покрытия различной степени блеска (глянцевые , полуглянцевые, полуматовые, матовые).

За счет указанных преимуществ удельная стоимость окраски единицы площади поверхности изделия порошковой краской ниже, чем при использовании обычных красок, несмотря на их более высокую стоимость. При этом получаемое покрытие обладает повышенным комплексом защитных и декоративных свойств.

Что же представляют собой порошковые краски?

Порошковые краски — это твердые дисперсные композиции, в состав которых входят пленкообразователи (смолы ), отвердители, наполнители, пигменты и целевые добавки. Независимо от состава готовая порошковая композиция представляет собой сыпучий дисперсный порошок, который должен обладать однородностью, физической и химической стабильностью и неизменностью состава при хранении и использовании.

Качество приготовления композиции во многом предопределяет внешний вид и свойства покрытий. Технология изготовления ПК состоит из нескольких стадий:

1) Сухое смешение компонентов в смесителе. В
результате получается так называемый премикс,
который далее направляется в экструдер.

2) Экструдирование: смешение компонентов в
расплаве. На выходе получается однородный материал
в виде ленты, который далее дробится до получения
так называемых «чипсов » размером 0,5-1 см.

3) «Чипсы » загружаются в мельницу, где измельчаются
до размера частиц, как правило, от 10 до 100 мкм. При
этом максимальную долю составляет фракция с
размером частиц 40-50 мкм.

Готовую ПК наносят на изделия из стали, алюминия, цветных металлов, стекла, керамики, древесины, пластмассы и силикатных материалов в электростатическом поле (электростатика , трибостатика, в ваннах «кипящего слоя»).

Наибольшее применение нашли ПК на основе
термоотверждаемых пленкообразователей.

Первоначально это были эпоксидные, полиэфирные и акриловые ПК. Позднее были разработаны эпоксиполиэфирные (или гибридные), а также полиуретановые и полиэфирные, отверждаемые триглицидилизоциануратом (ТГИЦ ). В настоящее время наиболее распространены полиэфирные, эпоксидно-полиэфирные и эпоксидные порошковые материалы.

Выбор того или иного типа порошковой краски должен определяться прежде всего тем, какими свойствами должно обладать покрытие, его назначением и условиями его эксплуатации.

Эпоксидные порошковые краски

Основное достоинство эпоксидных порошковых красок — оптимальное сочетание хороших физико-механических и электроизоляционных свойств. Покрытия на их основе отличаются исключительно высокой адгезией, механической прочностью и химической стойкостью. Их можно применять при окраске изделий из разных металлов без предварительного грунтования поверхности. В свою очередь их можно наносить в качестве грунта под жидкие и порошковые лакокрасочные материалы. Если при использовании эпоксидного порошкового покрытия требуется повышенная противокоррозионная стойкость, рекомендуется черные металлы и оцинкованную сталь фосфатировать, а алюминий и его сплавы хроматировать.

Хорошая стойкость к щелочам и кислотам, алифатическим и ароматическим углеводородам, маслам, топливу, воде позволяют использовать эпоксидные ПК для наружной и внутренней защиты магистральных трубопроводов. Используя эпоксиды, можно получить покрытия толщиной до 500 мкм с одинаково хорошими твердостью, эластичностью и ударной прочностью.

Традиционными потребителями эпоксидных порошков являются электротехника и радиотехника, где эти покрытия заменяют многие виды сложной электроизоляции. Существенным недостатком эпоксидных покрытий является их ограниченная атмосферостойкость (меление при эксплуатации на открытых площадках) и склонность к пожелтению из-за перегрева в печи отверждения, особенно если она обогревается газом.

Эпоксидно-полиэфирные порошковые краски

Если к порошковому покрытию не предъявляются повышенные антикоррозионные требования и/или не требуется устойчивость к действию растворителей, эпоксидные порошки заменяют эпоксидно-полиэфирными (применяется сочетание эпоксидной и полиэфирной смол), которые получили название гибридных порошков.

При появлении гибридных порошков потребителей больше привлекала их низкая цена, но впоследствии расширение их сбыта было обусловлено технологическими преимуществами (например , их покрытия стойки к перегреву при отверждении), повышением механических свойств, химической стойкости, а также пониженной чувствительностью к ультрафиолетовому излучению (для композиций с небольшим содержанием эпоксикомпонентов). Применение эпоксиполиэфиров с различным соотношением эпоксидной и полиэфирной смол позволяет широко их использовать для отделки предметов домашнего обихода, металлической, садовой, офисной, медицинской и школьной мебели, спортивных снарядов, торгового, осветительного и электрооборудования и др. Большим спросом эпоксиполиэфиры пользуются благодаря высоким декоративным качествам покрытий на их основе. Современная технология получения порошковых красок позволила не только расширить цветовую гамму покрытий, но и добиваться различной фактуры покрытия. Это такие покрытия, как «муар », покрытие под «кожу », покрытия с мелкой и крупной структурой, серия «антиков », металлики различных цветов. Особое положение занимают так называемые покрывные лаки, используемые для защиты цветных металлов (бронза , медь, латунь) и тонкого слоя металла вакуумного напыления от окисления, позволяющие выигрышно оттенить поверхность, а также лаковые и наполненные композиции для стекла (флаконы для парфюмерии и косметики и т.д.).

Полиэфирные порошковые краски

Полиэфирные покрытия отличаются прежде всего атмосферостойкостью, механической прочностью и повышенной стойкостью к истиранию. По атмосферостойкости покрытий полиэфирные краски превосходят любые другие порошковые материалы Диэлектрические показатели близки к показателям эпоксидных покрытий. Они обладают высоким глянцем и хорошей адгезией к металлам, в том числе и к легким сплавам. Однако щелочестойкость полиэфирных покрытий низка.

Полиэфирные ПК делятся на два типа:

1) отверждаемые триглицидилизоциануратом (TGIC );

2) отверждаемые гидроксилсодержащим отвердителем
типа PRIMID.

Покрытия на основе TGIC наиболее устойчивы к атмосферным воздействиям и применяются в архитектуре. Однако существует довольно противоречивая информация о токсичности данного компонента, что и влечет за собой использование альтернативного варианта на основе PRIMID в тех случаях, когда нет необходимости в особенно высокой атмосферостойкости.

Назначение полиэфирных покрытий: алюминиевые фасонные профили, архитектурно-строительные конструкции, диски колес и детали машин, сельскохозяйственное оборудование, садовый инвентарь и т.д. Полиэфирные покрывные лаки для покрытий с высокими атмосферостойкостью и глянцем используются в многослойной технологии (например , при окраске дисков колес) для окончательной отделки изделия.

К полиэфирным ПК относят также так называемые «полиуретаны », отверждаемые блокированным изоцианатом и отличающиеся рядом особенностей. Полиуретановые покрытия характеризуются устойчивым блеском, обладают водо- и атмосферостойкостью, стойкостью к жидкому топливу, минеральным маслам, растворителям. Их применяют для защиты изделий, подвергающихся трению, абразивному износу, некоторых видов химического оборудования и емкостей для хранения жидких и газообразных химических веществ. Однако в Западной Европе и России такие материалы не получили большого распространения.

Технологический процесс окраски изделия порошковым материалом состоит из следующих стадий:

Подготовка поверхности: обезжиривание, удаление загрязнений и окислов, при необходимости и возможности - преобразование (конверсия ) поверхности для повышения адгезии и защиты от коррозии (фосфатирование , хроматирование); нанесение слоя порошковой краски на окрашиваемую поверхность;

Формирование пленки покрытия: оплавление,
отверждение, охлаждение.

Полиэфирные лаки и грунты необычные материалы для покраски. Материалы с отличными потребительскими характеристиками, но малым временем жизни, требующие оперативности от маляра. Конечно, о применении в бытовых условиях речи никакой не идет, это вы поймете из описания. Статья буде полезна для тех, кто фанат покрасочного дела.

Полиэфирные краски, лаки, грунты обычно состоят из трёх компонентов: основы, катализатора и ускорителя. При соединении компонентов в результате сложной химической реакции получается стабильная лакокрасочная плёнка.

Полиэфирные краски, лаки, грунты имеют своеобразие, определяющее многие их эксплуатационные характеристики, поэтому имеет смысл вкратце с ней ознакомиться.

Полиэфирные краски, лаки, грунты поставляются обычно в виде раствора смол в мономере (стирол), который не испаряется при сушке, а принимает участие в реакции сополимеризации. Отсюда следуют две технологические особенности ПЭ (полиэфирных) материалов: высокий сухой остаток, доходящий до 96% и ограниченный срок годности - один год.

Особенности использования полиэфирных лакокрасочных материалов

В рабочую смесь перед употреблением вводят небольшое количество (по 2%) катализатора - вещества, инициирующего реакцию, и ускорителя, активирующего катализатор. В результате сополимеризации полиэфира с мономером образуется разветвлённый пространственный полимер.

Полезно знать, что добавление одного ускорителя (обычно синего цвета) мало меняет жизнеспособность смеси (то есть она может сохраняться много дней). Добавление в материал одного катализатора сокращает жизнеспособность уже до десятка часов.

Рабочая смесь, содержащая «быстрые» катализатор и ускоритель, имеет жизнеспособность уже только 10-40 минут, "медленные" катализатор и ускоритель дают жизнеспособность несколько часов.

Оригинальной особенностью некоторых ПЭ материалов (парафиносодежащих) является также и то, что они содержат в своём составе небольшое количество (0.1-0.3%) парафинов.

Дело в том, что в присутствии кислорода свободные радикалы, на которые распадается инициатор, реагируют в основном с ним, не вызывая реакции сополимеризации. Введённые же в состав парафины всплывают, образуют на поверхности плёнку, препятствующую доступу кислорода, и затем только происходит полимеризация лакокрасочного материала.

Парафиновый слой на поверхности удаляется затем шлифованием или полировкой, являющимися обязательными компонентами технологии вменения парафиносодержащих ПЭ материалов.

Разбавление полиэфирных лакокрасочных материалов

Разбавляются полиэфирные краски, лаки, грунты очень быстрыми разбавителями на основе ацетона, большая часть его испаряется при нанесении, так что нанесённый слой получается достаточно вязким, не дающим подтёков. Оставшаяся часть ацетона испаряется за 10-15 минут. После шлифовки через несколько часов усадка очень мала.

Технологическими особенностями ПЭ материалов, следующими из того, что основной разбавитель не должен испаряться, являются большая рекомендуемая величина наносимого слоя - 200-250 г/м.кв. и слабая зависимость длительности сушки от толщины мокрого слоя.

Большая толщина мокрого слоя и высокий сухой остаток позволяют получать за одно нанесение очень толстую лакокрасочную плёнку. Эти особенности наряду с хорошей физико-химической стойкостью определяют преимущества работы с полиэфирными ЛКМ, особенно в случае глянцевых отделок.

Сушка полиэфирных грунтов до шлифовки

Сушка полиэфирных грунтов под глянцевые отделки длится, как правило, гораздо дольше минимального срока сушки до шлифовки.

Для того, чтобы глянцевая отделка со временем не портилась «оспинками» проседаний, нанесённый грунт необходимо выдерживать до шлифовки 1-2 суток, а для эталонного зеркального глянца - неделю.

Толстые, жёсткие, идеально ровные и гладкие основания под зеркально глянцевые отделки - это именно то, что наилучшим образом могут обеспечить ПЭ материалы.

Приготовление рабочей смеси полиэфирных лакокрасочных материалов

При приготовлении рабочей ПЭ смеси требуется проявлять осторожность. Нельзя смешивать катализатор и ускоритель в одной ёмкости, так как они вступают в бурную реакцию с выделением тепла, опасную для персонала и помещения.

Кроме того, рабочая смесь обладает обычно короткой жизнеспособностью (10-40 минут), ограничен также срок хранения самих материалов. Несмотря на низкое испарение разбавителей, некоторые ПЭ материалы обладают более резким и неприятным запахом, чем ПУ материалы.

Для повышения технологичности ПЭ материалов разработаны «медленные» катализаторы и ускорители, увеличивающие жизнеспособность до нескольких часов, правда, и время сушки материала с такими добавками также возрастает.

Для того чтобы обойти затруднения, связанные с малым временем жизни, используют иногда специальные двухкомпонентные насосы, смешивающие материалы непосредственно перед нанесением или же распылительные пистолеты со смешением компонент в факеле.

Потребительские свойства полиэфирных лакокрасочных материалов

Плёнки ПЭ материалов выдерживают колебания температур от -40°С до 60°С, но имеют невысокую атмосферостойкость. ПЭ материалы плохо отверждаются на смолистой хвойной древесине, на палисандре и некоторых других маслянистых породах древесины.

Большая толщина ПЭ грунтов имеет следствием склонность отделяться от основания при нагрузках, что особенно неприятно при прозрачной отделке. Однако, отделка, содержащая ПЭ грунт и финишный ПУ материал оказывается вполне ударостойкой. Разработаны добавки, повышающие эластичность ПЭ ЛКМ.

ПЭ материалы применяются в основном в качестве грунтов (прозрачные и белые) для получения высокоглянцевой отделки. Иногда применяют также глянцевые финишные ПЭ лаки для получения толстого высокоглянцевого («рояльного») покрытия.

Табл. 3.

Эти результаты доказывают, что гидрофобная коллоидальная двуокись кремния дает лучшие показатели, чем гидрофильная коллоидальная двуокись кремния или осаждённый диоксид кремния. Применение осаждённого диоксида кремния дало смешанные результаты, но можно сказать, что это не панацея устраняющая проблему.

Гидрофильная коллоидальная двуокись кремния является наиболее часто используемым с полиэфирными смолами тиксотропом, она, как показано, тоже дает смешанные результаты. Гидрофобная коллоидальная двуокись кремния, которая в данном случае характеризуется специальной обработкой кремния, постоянно показывала хорошие результаты, независимо от применяемой комбинации наполнителей или пигментов.

В таблице 4 представлены результаты изменения реологии желеобразного покрытия простым разжижением его растворителем. Полученные результаты явно разочаровывают. Например, при необходимости изменения реологии для облегчения распыления покрытия нельзя просто разбавить его растворителем, иначе увеличивается риск растрескивания смоляного слоя.

Влияние добавки разбавителя на интенсивность растрескивания смолы

Цвет покрытия

Смола Наполнитель Разбавитель Давление в баке, фунт на кв. дюйм Визуальная оценка
Светло-коричневый Изомер NPG Окись алюминия нет 40 1
Светло-коричневый Изомер NPG Окись алюминия 5% ацетона 20 1
Светло-коричневый Изомер NPG Окись алюминия 10% ацетона 30 0
Светло-коричневый Изомер NPG Окись алюминия 15% ацетона 30 0
Светло-коричневый Изомер NPG Окись алюминия 20% ацетона 40 1
Светло-коричневый Изомер NPG Окись алюминия 5% МЕК 20 2
Светло-коричневый Изомер NPG Окись алюминия 5% метил-метакрилата 20 1
Светло-коричневый Изомер NPG Окись алюминия 5% метилен-хлорида 20 1

Табл. 4.

В ходе исследования были выявлены дополнительно следующие представляющие интерес обстоятельства: (1) применение талька и окиси кремния постоянно оказывалось более эффективным средством борьбы с отслоениями, чем применение окиси алюминия; (2) тип смолы применяемой для желеобразного покрытия имеет значение, поскольку применение в составе покрытия орто-смол NPG неизменно улучшало качества покрытия по сравнению с покрытиями получаемыми с применением стандартных изомерных смол NPG; (3) правильное применение воздуховыделяющих реагентов и увлажнителей вероятно оказывает положительное воздействие на устойчивость протии отслоений во всех исследованных составах желеобразного покрытия.

Выводы

Растрескивание относится к явлениям, имеющим механическую природу, поэтому чтобы решить проблему следует, прежде всего, максимизировать параметры технологии нанесения покрытия и оборудования для нанесения применяемого изготовителем. Давление на жидкость или давление воздуха при распылении должно быть на минимальном уровне, позволяющем наносить покрытие со скоростью достаточной для выполнения производственного плана. Подбор сопла-насадки может оказаться полезным для понижения давления нанесения при сохранении качества напыляемого покрытия. Оператор, напыляющий покрытие, должен использовать рисунок веерообразного распыления, обеспечивающий расстояние от сопла до поверхности пресс-формы в пределах 18-36 дюймов при толщине наносимого материала 18 ±2 roils. Материал наносится за 2-3 прохода с интервалом между проходами порядка нескольких секунд. Следует избегать работы при низких температурах и не следует разбавлять состав покрытия. Уровень катализации должен соответствовать рекомендуемому.

Указанные меры минимизируют три типа сдвиговых напряжений упомянутых в предыдущем разделе. Внимательное отношение к уровню катализации, рабочей температуре и отказ от пользования разбавителями улучшает реологию наносимого покрытия, обеспечивая удобство распыления и время гелеобразования нужное для уменьшения вероятности растрескивания. Раствор покрытия следует тщательно перемешать перед распылением для получения соответствующей взвеси частиц твердых компонентов раствора и уменьшения вероятности возникновения растрескивания.

Изготовитель желеобразного покрытия может оказать помощь пользователю, наносящему покрытия путем поставки раствора покрытия с показателями вязкости и тиксотропии, позволяющими производить распыление при пониженных давлениях без добавки разбавителей и при сохранении времени гелеобразования с нужным уровнем катализации. Изготовитель покрытия должен также продумать состав покрытия, обеспечивающий наилучшее сочетание пигментов, наполнителей, смол и добавок. Предлагается использовать в качестве наполнителей тальк и окись кремния в количествах улучшающих текучесть и обеспечивающих удаление пузырьков воздуха из желеобразного покрытия. Пигменты следует растирать в одном растворе связующего вещества, совместимого с конкретным типом используемой смолы. При растирании частицы пигмента должны полностью смачиваться. Чем более однородна смесь пигментов и смол, тем меньше вероятность возникновения отслоений. Правильное применение гидрофобных увлажнителей и реагентов для выпуска воздуха может значительно улучшить баланс между различными компонентами покрытия и особенно улучшить смачиваемость пигментов и наполнителей смолой. Чем больше взаимосвязь между основными компонентами, тем меньше вероятность возникновения растрескивания.

Последним из предметов внимательного рассмотрения является использование тиксотропных реагентов, например, гликолей с низким молекулярным весом обеспечивающих, в сочетании с окисью кремния, устойчивость против образования натеков. Для выбора реагента менее полярного и обеспечивающего более стабильную систему с применение смол, пигментов и наполнителей, может возникнуть необходимость провести испытания. Применение более полярных реагентов может в некотороых случаях ухудшить образование отслоений.

Более тщательный поход к формированию состава покрытий и сотрудничество с пользователями, наносящими покрытия, по совершенствованию методики нанесения в значительной степени поможет, по нашему мнению, изготовителям покрытий минимизировать и возможно ликвидировать проблему растрескивания желеобразных покрытий их полиэфирных смол.

C текущей ситуацией и прогнозом развития российского рынка полиэфирных смол можно познакомиться в отчете Академии Конъюнктуры Промышленных Рынков

«Рынок полиэфирных смол в России».

Литература

1. Stahlke, N.P., and Lester, M., Modern Plastics, Oktober 1979
2. Polyester Application Manual, Cook Paint and Varnish Company, 5th Edition, p.29, 1981
3. Gel-Kote Application Manual, Glidden Coatings and Resins Division of SCM Corp., p.31
4. Additives For Plastics, Byk-Mallinckrodt Air Release Agents In Polyester Composites, Technical Bulletin 401, p.5. 1980.