Самодельная рука манипулятор для робота. DIY: Рука-манипулятор для сборки деталей с конвейера. Пошаговая инструкция по созданию. Виды промышленных роботов-манипуляторов

Имеет подсветку. Всего робот работает на 6-ти серводвигателях. Для создания механической части использовался акрил толщиной два миллиметра. Для изготовления штатива было взято основание от диско-шара, при этом один мотор строен прямо в него.

Робот работает на плате Arduino . В качестве источника питания используется компьютерный блок.

Материалы и инструменты:
- 6 серводвигателей;
- акрил толщиной 2 мм (и еще небольшой кусок толщиной 4 мм);
- штатив (для создания основания);
- ультразвуковой датчик расстояния типа hc-sr04;
- контроллер Arduino Uno;
- контроллер питания (изготавливается самостоятельно);
- блок питания от компьютера;
- компьютер (нужен для программирования Arduino);
- провода, инструменты и прочее.



Процесс изготовления:

Шаг первый. Собираем механическую часть робота
Механическая часть собирается очень просто. Два куска акрила нужно соединить с помощью серводвигателя. Другие два звена соединяются аналогичным образом. Что касается схвата, то его лучше всего купить через интернет. Все элементы крепятся с помощью винтов.

Длина первой части составляет порядка 19 см, а второй примерно 17.5 см. Переднее звено имеет длину 5.5 см. Что касается остальных элементов, то их размеры выбираются на личное усмотрение.





Угол поворота в основании механической руки должен составлять 180 градусов, поэтому снизу нужно установить серводвигатель. В нашем случае его нужно установить в диско-шар. Робот же устанавливается уже на серводвигатель.

Для установки ультразвукового датчика понадобится кусок акрила толщиной 2 см.

Чтобы установить схват будет нужно несколько винтов и серводвигатель. Нужно взять качалку от серводвигателя и укорачивать ее до тех пор, пока она не подойдет ко схвату. Затем можно закрутить два маленьких винта. После установки серводвигатель нужно повернуть в крайнее левое положение и свести губки захвата.

Теперь серводвигатель крепится на 4 болта, при этом важно следить, чтобы он находился в крайнем левом положении, а губы были сведены.
Теперь сервпривод можно подключить к плате и проверить, работает ли схват.








Шаг второй. Подсветка робота
Чтобы робот был интереснее, ему можно сделать подсветку. Делается это с помощью светодиодов разнообразных цветов.


Шаг третий. Подключение электронной части
Основным контроллером для робота является плата Arduino. В качестве источника питания используется компьютерный блок, на его выходах нужно найти напряжение 5 Вольт. Оно должно быть, если замерить мультиметром напряжение на красном и черном проводе. Это напряжение нужно для питания серводвигателей и датчика расстояния. Желтый и черный провод блока выдает уже 12 Вольт, они нужны для работы Arduino.

Для сервомоторов нужно сделать пять коннекторов. К позитивным подключаем 5В, а негативные к земле. Аналогичным образом подключается и датчик расстояния.

Еще на плате имеется светодиодный индикатор питания. Для его подключения используется резистор 100 Ом между +5В и землей.










Выходы от серводвигателей подключаются к ШИМ-выходам на Arduino. Такие пины на плате обозначаются значком «~». Что касается ультразвукового датчика расстояния, то его можно подключить к пинам 6 и 7. Светодиод подключается к земле и 13-му пину.

Теперь можно приступать к программированию. Перед тем как подключаться через USB, нужно убедиться, что питание полностью отключено. При тестировании программы питание робота тоже нужно отключать. Если это не сделать, контроллер получить 5В от USB и 12В от блока питания.

На схеме можно увидеть, что для управления серводвигателями были добавлены потенциометры. Они не являются необходимой составляющей робота, но без них предложенный код работать не будет. Потенциометры подключаются к пинам 0,1,2,3 и 4.

На схеме есть резистор R1, его можно заменить потенциометром на 100 кОм. Это позволит регулировать яркость вручную. Что касается резисторов R2, то их номинал 118 Ом.

Вот перечень основных узлов, которые применялись:
- 7 светодиодов;
- R2 - резистор на 118 Ом;
- R1 - резистор на 100 кОм;
- переключатель;
- фоторезистор;
- транзистор bc547.

Шаг четвертый. Программирование и первый запуск робота
Чтобы управлять роботом, было использовано 5 потенциометров. Вполне реально заменить такую схему на один потенциометр и два джойстика. Как подключить потенциометр, было показано в предыдущем шаге. После установки скеча робота можно испытать.

Первые испытания робота показали, что установленные серводвигатели типа futuba s3003 оказались слабыми для робота. Их можно применять лишь для поворота руки или для схвата. Вместо них автор установил двигатели mg995. Идеальным вариантом будут двигатели типа mg946.

Это проект робота, который содержит шесть степеней свободы манипулятора. Устройство может применяться на производственной линии, как заготовка для конвейерной ленты, работая с паллетами на рабочей станции. Главной целью проекта было проверить, является ли манипулятор достаточно точным для сборки деталей, когда они движутся на конвейере. Эта сборка, конечно, не нашла широкого применения в промышленности, но всё возможно в будущем.

Как он работает?

Существует инкрементный датчик на нижней стороне электродвигателя, который подает информацию к основному блоку процессора манипулятора, чтобы иметь возможность рассчитать фактическую скорость и смещение конвейера.

На стороне конвейера есть несколько индуктивных датчиков, которые могут обнаруживать паллеты алюминия, когда они проходят мимо них. Используя эту информацию, захват руки робота может следовать паллету с той же скоростью, и может сделать все монтажные работы. Скорость конвейерной ленты можно регулировать с помощью двух преобразователей частот. Паллет может быть остановлен в нескольких точках с пневматической пробкой, и он возвращается в исходное положение с помощью селектора пневматическим способом.

Для создания робота было бы неплохо использовать 3D-принтер, который подойдет для печати больших объектов (максимальный размер ~ 1,2 м * 0,8 м). Было бы здорово увеличить головку манипулятора, а также использовать вентилятор компьютера для того, чтобы пластиковые нити остыли быстро. В общем, немного объектов будет необходимо для печатного объекта.

Видеопрезентация работы:

Здесь можно увидеть робота и его рабочую станцию во время выполнения одной простой задачи сборки на 30% от максимальной скорости:

Шаг 1. Робот без рабочей станции:

Так выглядит промышленная рука-манипулятор без какой-либо рабочей станции.

Шаг 2. Разборка конвейерной ленты от старых частей:

Если у вас есть возможность использовать некоторые старые части из конвейерной ленты, вы можете разобрать их, убрав часть от масла и других загрязнений, и повторно собрать один "новый" конвейер нужной длины и размеров, и вернуть все недостающие части.

Шаг 3. Подключение датчика:

Для того, чтобы определить скорость двигателя (и, следовательно, скорость конвейера), поверните ось к нижней стороне электродвигателя. Также ось двигателя необходима, чтобы иметь возможность изменить расширение устройства. На другом конце расширения нужно установить инкрементный датчик Megatron (MHL40 8 1000 5 BZ NA). Основные части датчика: источник света (светодиод), который светит через диск с отверстиями. На другой стороне этого диска есть датчик света, который считает импульсы входящего света, и передает эти сигналы на главный процессор робота. Первая настройка необходима для того, чтобы синхронизировать роботизированную систему координат, переместить конвейерную ленту, и вращать датчик на этом расстоянии.

После этого робот вычисляет сигналы датчика расстояния в его системе координат. Одной из самых сложных и трудоемких задач (после повторного собрания механической части конвейера) было сделать правильные настройки для этой синхронизации. Для этого необходимо написать программу, которая обрабатывает преобразователи частоты для запуска конвейера и открыть-закрыть пневматические пробки, и, конечно, необходимо переместить робота в области и нужные позиции. Основные направления этой синхронизации кода доступны в руководстве по работе с роботом (Mitsubishi RV-3SDB) в формате PDF. Ниже доступен код с настройками.

Шаг 4. Преобразователи частоты:

Преобразователи частоты необходимы, чтобы иметь возможность контролировать скорость вращения двигателя. Он работает первоначально с частотой 50 Гц, но это слишком быстро для этой процедуры. Установите частоту 33Гц на базовой настройке. Благодаря скорости изменения входа селектора, есть также возможность изменения скорости в программном коде робота. Преобразователь частоты поставляется в использованном варианте, но делает свою работу очень хорошо. Также аварийный выключатель (большая красная кнопка) необходим для подключения по соображениям безопасности.

Шаг 5. Создание паллет:

Все части паллет являются ручной работой. Были сделаны только "заготовки". К сожалению, возможность 3D печати не доступна здесь, так как эти части должны быть сделаны из алюминия или из пластика. На верхней части паллет нужно установить шарикоподшипники, чтобы иметь лучшие обороты по краям. Большой кусок алюминия необходим из-за близости индуктивных датчиков.

Шаг 6. Завершение конвейерной ленты:

После нужно добавить стартовую точку и конечную точку конвейерной ленты. Также интегрирован выход селектора. Он работает с пневматическими переключателями.

Шаг 7.

Пневматические переключатели останавливают и пропускают паллет. В начальной точке есть индуктивный датчик приближения, чтобы убедиться, что паллет настроен перед началом сборки. Затем коммутатор освобождает паллет, который проходит мимо второго датчика на близком расстоянии. Это дает сигнал на главный процессор, который обрабатывает сигналы датчика, называемые "живые". Расстояние измеряется отсюда. Есть и другая пробка и датчик на конце линии. (Существует возможность поставить более паллет на конвейере в одно и то же время, но тем самым необходима безопасность остановки, прежде чем дать паллету способ выбора.)

"Электрическая часть" рабочей станция находится только в предварительной версии: она должна быть вмонтирована в электрическую кабину. (Вопрос только в деньгах.)

Шаг 8. Программирование робота:

Основные команды для кода сборки:

  • M_Out (N) = 1: включение или выключение выходов (например, пневматических переключателей или двигателей)
  • Wait M_In(n) = 1: подождите нарастающий сигнал (например, сигналы индуктивных датчиков)
  • m1 = M_Enc (1): при запуске функции отслеживания он дает мгновенное значение кодера к m1 целому.
  • Trk On,pfog,m1: включение функции отслеживания движений робота.
  • Trk Off: выключение функции отслеживания и возвращения к "нормальной" системе координат робота.
Примечание автора: весь код программы написан с комментариями на венгерском языке, так что при возникновении трудностей, обращайтесь за помощью к переводчику (Google Translator подойдет).

Servo On "Robot szervo bekapcsolása
Ovrd 70 "70%-os sebesség
Mov phome2 "a darab várakozási pozícióba álljon
"Futószalag összeszerelő ág nullázása (mert a frekvenciaváltó felfutó és lefutó élre is reagál).
M_Out(5)=0 "összeszerelő ág hátramenet nullázása
M_Out(6)=0 "összeszerelő ág előremenet nullázása
M_Out(8)=0 "visszavezető ág előremenet nullázása
M_Out(9)=0 "visszavezető ág hátramenet nullázása
"
"Vizsgálat kezdés előtt: ha a paletta nincs a kiindulási ponton, oda kell vinni.
If M_In(4)=0 Then GoSub *visszavezet "ha az első induktív jele 0, akkor nincs ott a paletta
*visszavezet
If M_In(4)=1 Then GoTo *indit "mivel ez rekurzív programrész, ha mar ott a paletta, kilépünk
M_Out(6)=1 "összeszerelő futószalag ág előre megy egy kicsit

M_Out(2)=1 "váltó külső állásba tesz
M_Out(2)=0 "váltó nyomás visszavesz
Dly 7 "eddigre biztos a végére ér a paletta az összeszerelő ágnak
M_Out(1)=1 "váltó belső állásba tesz
M_Out(1)=0 "leveszi a váltóról a nyomást
M_Out(6)=0 "összeszerelő futószalag ág leállítása
Dly 0.5
M_Out(9)=1 "visszavezető ág futószalag beindul visszafelé
M_Out(5)=1 "összeszerelő ág hátramenetbe kapcsol
Wait M_In(4)=1 "addig vár, amíg az első induktív nem érzékel
M_Out(8)=0 "visszavezető futószalag leáll
Dly 1 "a paletta már a kiindulási pontban van
M_Out(5)=0 "összeszerelő ág hátra leáll
If M_In(4)=1 Then GoTo *indit
Return
*indit
M_Out(6)=1 "összeszerelő ág előremenetben indítása
M_Out(4)=1 "1. szelep behúz
M_Out(2)=1 "váltó külső állás
M_Out(2)=0 "váltóról leveszi a nyomást
Wait M_In(6)=1 "indítást érzékelő induktív bejelez
m1=M_Enc(1) "ekkor felvesszük az enkóder pozícióját (szinkronizálás)
"*var
"abban az esetben szükséges csak, ha az indító érzékelő a robot munkaterén kívül van
"PC=TrWcur(1,pjel,m1) "meg kell várnia a paletta beérkezését a munkatérbe
"If PosCq(PC)<>1 Then GoTo *var "beért-e a munkatérbe?
"If PC.Y>350 Then GoTo *var "beért-e a szerelési távolságba? (350mm)
"If PC.Y<0 Then GoTo *var "probléma esetén már túlment volna "a szerelési távolságon
Trk On,pjel,m1 "tracking indítása
"pjel: fixen beállítandó érték, a robot koordinátarendszerében az induktív "bejelzésekor a munkadarab pozíciója
"m1: az enkóder pozíciója, amikor a munkadarab elérte az induktívot
"innentől egy mozgó koordináta rendszerben leszünk, amelynek középpontja a munkadarab
Mov phenger,10 "felvesszük az első darabot
Mvs phenger
Dly 0.25
Hclose 1
Dly 0.25
Mvs phenger, 10
Mov pkp,50
Mvs pkp
Dly 0.25
HOpen 1 "leraktuk a hengert
Dly 0.25
Mov pkp, 50
Mov pdugattyu, 10 "dugattyúért megy
Mvs pdugattyu
Dly 0.25
Hclose 1 "felvettük a dugattyút
Dly 0.25
Mvs pdugattyu, 10
Mov pkp, 50
Mvs pkp
Dly 0.25
HOpen 1 "leraktuk a dugattyút
Dly 0.25
Mov pkp, 50
Mov prugo, 10 "rugóért megy
Mvs prugo
Dly 0.25
Hclose 1 "felvettük a rugót
Dly 0.25
Mvs prugo, 10
Mov pkp, 50
Mvs pkp
Dly 0.25
HOpen 1 "leraktuk a rugót
Dly 0.25
Mov pkp, 50
Trk Off
Wait M_In(7)=1 "addig vár, amíg az harmadik(összeszerelő ág vége) induktív nem érzékel
M_Out(4)=0 "1. szelep kienged
M_Out(0)=1 "2. szelep (összeszerelő végpont) behúz
Wait M_In(7)=0 "addig vár, amíg az harmadik(összeszerelő ág vége) induktív előtt mar nincs ott a darab (tehát kifutott a végpontig)
Dly 1
M_Out(6)=0 "összeszerelő ág futószalag előre leállít
M_Out(1)=1 "váltó belső állás
M_Out(1)=0 "váltó belső állást kell nullázni
M_Out(0)=0 "2. szelep (összeszerelő végpont) kienged
M_Out(5)=1 "összeszerelő futószalag hátra indul
M_Out(9)=1 "visszavezető futószalag előre indul
Wait M_In(6)=1 "addig vár, amíg az visszavezető induktív nem érzékel (de nem történik semmi)
Wait M_In(4)=1 "addig vár, amíg az összeszerelő induktív nem érzékel (vissza nem ért a darab)
M_Out(5)=0 "összeszerelő futószalag hátra leáll
M_Out(9)=0 "visszavezető ág futószalag leáll
Mov phome2
Servo Off
Hlt
"
"kimenetek és bemenetek listája
"szelepek
"M_Out(0)=1 "2. szelep (összeszerelő végpont) behúz
"M_Out(0)=0 "végpont szelep kienged
"M_Out(1)=1 "váltó belső állásra vált
"M_Out(1)=0 "váltó belső állás nyomás levesz
"M_Out(2)=1 "váltó külső állásra állít
"M_Out(2)=0 "itt nem kell nyomást levenni
"M_Out(3)=1 "3.szelep (visszavezető ág) behúz
"M_Out(3)=0 "3. szelep kienged
"M_Out(4)=1 "1. szelep behúz
"M_Out(4)=0 "1. szelep kienged
"
"Futószalag ágak nullázása (mindig kell, mert mindig a korábbi érték ellentétjére indul vagy áll meg).
"M_Out(5)=0 "futószalag leáll nullázással kezdünk
"M_Out(6)=0 "futószalag leáll nullázással kezdünk
"M_Out(8)=0 "másik futószalag előre leáll
"M_Out(9)=0 "másik futószalag előre leáll
"
"M_Out(5)=1 "összeszerelő ág futószalag hátra indul
"M_Out(5)=0 "összeszerelő ág futószalag leáll
"M_Out(6)=1 ""összeszerelő ág futószalag előre indul
"M_Out(6)=0 ""összeszerelő ág futószalag előre leáll
"M_Out(8)=1 "visszavezető ág futószalag hátra indul
"M_Out(8)=0 " visszavezető ág futószalag hátra leáll
"M_Out(9)=1 " visszavezető ág futószalag előre indul
"M_Out(9)=0 " visszavezető ág futószalag előre leáll
"
"induktívok
"Wait M_In(4)=1 "addig vár, amíg az első induktív nem érzékel
"Wait M_In(5)=1 "addig vár, amíg az indító induktív nem érzékel
"Wait M_In(6)=1 "addig vár, amíg az visszavezető induktív nem érzékel
"Wait M_In(7)=1 "addig vár, amíg az harmadik(összeszerelő ág vége) induktív nem érzékel

Мы разработали робо-руку, которую любой желающий сможет собрать самостоятельно. В этой статье речь пойдем о том, как собрать механические части нашего манипулятора.

Обратите внимание! Это старая статья! Вы можете ознакомиться с ней, если вас интересует история проекта. Актуальная версия .

Манипулятор от сайт

Вот видео ее работы:

Описание конструкции

За основу мы взяли, манипулятор представленный на сайте Kickstarter, который назывался uArm . Авторы этого проекта обещали, что после завершения компании выложат все исходники, но этого не произошло. Их проект представляет собой отличное сочетание качественно сделанного как аппаратного, так и программного обеспечения. Вдохновившись их опытом мы решили сделать подобный манипулятор самостоятельно.
Большинство существующих манипуляторов предполагают расположение двигателей непосредственно в суставах. Это проще конструктивно, но выходит, что двигатели должны поднимать не только полезную нагрузку, но и другие двигатели. В проекте с Kickstarter’а этого недостатка нет, так как усилия передаются через тяги и все двигатели расположены у основания.
Второе преимущество конструкции в том, что площадка для размещения инструмента (захвата, присоски и т.д.) всегда расположена параллельно рабочей поверхности.

В итоге манипулятор имеет три сервопривода (три степени свободы), которые позволяют ему перемещать инструмент по всем трем осям.

Сервоприводы

Для нашего манипулятора мы использовали сервоприводы Hitec HS-485 . Это достаточно дорогие цифровые сервомашинки, но за свои деньги они обеспечивают честное усилие 4,8кг/см, точную отработку позиции и приемлемую скорость.
Их можно заменить на другие с такими же размерами

Разработка манипулятора

Для начала мы составили модель в SketchUp. Проверили конструкцию на собираемость и подвижность.

Нам пришлось немного упростить конструкцию. В оригинальном проекте использовались подшипники, которые сложно купить. Еще мы решили на начальном этапе не делать захват. Для начала мы планируем сделать из манипулятора управляемый светильник.
Изготавливать манипулятор мы решили из оргстекла. Оно достаточно дешево, хорошо выглядит и легко режется лазером. Для резки достаточно нарисовать требуемые детали в любом векторном редакторе. Мы сделали это в NanoCad:

Резка оргстекла

Мы заказываем резку оргстекла в компании , находящейся недалеко от Екатеринбурга. Они делают быстро, качественно и не отказываются от небольших заказов. Стоить резка таких деталей будет около 800 рублей. В результате вы получите вырезанные детали с обоих сторон которых находится полиэтиленовая пленка. Эта пленка нужна для защиты материала от образования окалины.

Эту пленку необходимо удалить с обоих сторон.

Еще мы заказали гравировку на поверхности некоторых деталей. Для гравировки достаточно просто нарисовать изображение на отдельном слое и указать это при заказе. Места гравировки необходимо зачистить зубной щеткой и затереть пылью. Получилось очень неплохо:

В итоге после удаления пленки и затирки у нас получилось вот это:

Сборка манипулятора

Для начала необходимо собрать пять частей:






В основании необходимо использовать винты с готовкой в потай. Придется немного рассверлить отверстия, чтобы рука могла поворачиваться.


После того как эти части собраны остается только прикрутить их к качалкам сервоприводов и накинуть тяги для позиционирования инструмента. Достаточно трудно прикрутить именно два привода в основании:

Сначала необходимо установить шпильку длиной 40мм (показана желтой линией на фото), а затем прикрутить качалки.
Для шарниров мы использовали обычные винты М3 и гайки с нейлоновой вставкой для предотвращения самораскручивания. Эти гайки хорошо видно на конце манипулятора:

Пока это просто плоская площадка на которую мы для начала планируем приделать лампочку.

Собранный манипулятор

Итоги

Сейчас мы работаем над электроникой и программным обеспечением и скоро расскажем вам о продолжении проекта, так что пока у нас нет возможности продемонстрировать его работу.
В перспективе мы планируем оснастить манипулятор захватом и добавить подшипники.
Если у Вас возникло желание сделать свой манипулятор — вы можете скачать файл для резки .
Список крепежа, который потребуется:

  1. М4х10 винт с головкой под внутренний шестигранник, 12шт
  2. М3х60 винт, 1шт
  3. М3х40 шпилька, 1шт (возможно придется немного укоротить напильником)
  4. М3х16 винт с гол. под в/ш, 4шт
  5. М3х16 винт с головкой в потай, 8шт
  6. М3х12 винт с гол. под в/ш, 6шт
  7. М3х10 винт с гол. под в/ш, 22шт
  8. М3х10 винт с головкой в потай, 8шт
  9. М2х6 винт с гол. под в/ш, 12шт
  10. М3х40 стойка латунная мама-мама, 8шт
  11. М3х27 стойка латунная мама-мама, 5шт
  12. М4 гайка, 12шт
  13. М3 гайка, 33шт
  14. М3 гайка с нейлоновым фиксатором, 11шт
  15. М2 гайка, 12шт
  16. Шайбы

UPD1

С момента публикации этой статьи прошло много времени. Первая ее формация была желтой и она была предельно ужасна. Красную руку уже было не стыдно показать на сайте, но без подшипников она все еще работала не достаточно хорошо, а еще ее было трудно собирать.
Мы сделали прозрачную версию с подшипниками, которая стала работать уже гораздо лучше и лучше был продуман процесс сборки. Эта версия манипулятора даже успела побывать на нескольких выставках.

Из особенностей данного робота на платформе Arduino можно отметить сложность его конструкции. Роборука состоит из множества рычагов, которые позволяют ей двигаться по всем осям, хватать и перемещать различные вещи, используя всего 4 серво-мотора. Собрав собственными руками такого робота, Вы точно сможете удивить своих друзей и близких возможностями и приятным видом данного устройства! Помните, что для программирования Вы всегда сможете воспользоваться нашей графической средой RobotON Studio!

Если у Вас появятся вопросы или замечания, мы всегда на связи! Создавайте и выкладывайте свои результаты!

Особенности:

Чтобы собрать робота манипулятора своими руками, вам понадобится довольно много компонентов. Основную часть занимают 3D печатные детали, их около 18 штук (печатать горку необязательно).Если вы скачали и распечатали все необходимое, то вам потребуются болты, гайки и электроника:

  • 5 болтов М4 20мм, 1 на 40 мм и соответствующие гайки с защитой от раскрутки
  • 6 болтов М3 10мм, 1 на 20 мм и соответствующие гайки
  • Макетка с соединительными проводами или шилд
  • Arduino Nano
  • 4 серво мотора SG 90

После сборки корпуса ВАЖНО убедиться в его свободной подвижности. Если ключевые узлы Роборуки двигаются с трудом, серво-моторы могут не справиться с нагрузкой. Собирая электронику, необходимо помнить, что подключать цепь к питанию лучше после полной проверки соединений. Чтобы избежать поломки серво-приводов SG 90, не нужно крутить руками сам мотор, если нет необходимости. В случае, если нужно разработать SG 90, нужно плавно подвигать вал мотора в разные стороны.

Характеристики:
  • Простое программирование ввиду наличия малого количества моторов, причем одного типа
  • Наличие мертвых зон для некоторых серво-приводах
  • Широкая применимость робота в повседневной жизни
  • Интерсная инженерная работа
  • Необходимость использования 3D принтера

Всем привет!
Пару лет назад на kickstarter появился очень занятный проект от uFactory - настольная робо-рука uArm . Они обещали со временем сделать проект открытым, но я не мог ждать и занялся реверс-инжинирингом по фотографиям.
За эти годы я сделал четыре версии своего виденья этого манипулятора и в итоге разработал вот такую конструкцию:
Это робо-рука с интегрированным контроллером, приводимая в движение пятью сервпоприводами. Основное ее достоинство в том, что все детали либо можно купить, либо дешево и быстро вырязать из оргстекла лазером.
Так как в качестве источника вдохновения я брал open sorce - проект, то всеми своими результатми делюсь полностью. Вы сможете скачать все исходники по ссылкам в конце статьи и, при желании, собрать такую же (все ссылки в конце статьи).

Но проще один раз показать ее в работе, чем долго рассказывать что она из себя представляет:

Итак, перейдем к описанию.
Технические характеристики

  1. Высота: 300мм.
  2. Рабочая зона (при полностью вытянутом манипуляторе): от 140мм до 300мм вокруг основания
  3. Максимальная грузоподъемность на вытянутой руке, не менее: 200г
  4. Потребляемый ток, не более: 6А
Также мне хочется отметить некоторые особенности конструкции:
  1. Подшипники во всех подвижных частях манипулятора. Всего их одинадцать: 10 штук на вал 3мм и один на вал 30мм.
  2. Простота сборки. Я очень много внимания уделил тому, чтобы была такая последовательность сборки манипулятора при которой все детали прикручивать предельно удобно. Особенно сложно было сделать это для узлов мощных сервоприводов в основании.
  3. Все мощные сервоприводы расположены в основании. То есть "нижние" сервоприводы не таскают "верхние".
  4. За счет параллельных шарниров инструмент всегда остается параллелен или перпендикулярен земле.
  5. Положение манипулятора можно менять на 90 градусов.
  6. Готовое Arduino-совместимое программное обеспечение. Правильно собранная рука может управляться мышкой, а по примерам кода можно составить свои алгоритмы движения
Описание конструкции
Все детали манипулятора режутся из оргстекла толщиной 3 и 5мм:

Обратите внимание, как собирается поворотное основание:
Самый сложный, это узел в нижней части манипулятора. В первых версиях у меня уходило очень много сил, чтобы собрать его. В нем соединяются три сервопривода и передаются усилия на захват. Детали вращаются вокруг штифта диаметром 6мм. Захват удерживается парралельно (или перпендикулярно) рабочей поверхности за счет дополнительных тяг:

Манипулятор с установленым плечом и локтем показан на фотографии ниже. К нему еще только предстоит добавить клешню и тяги для нее:

Клешня тоже устанавливается на подшипниках. Она может сжиматься и поворачиваться вокруг своей оси:
Клешню можно установить как вертикально, так и горизонтально:

Управляется все Arduino-совместимой платой и шилдом для нее:

Сборка
Чтобы собрать манипулятор потребуется около двух часов и куча крепежа. Сам процесс сборки я офмил в виде инструкции в фотографиях (осторожно, траффик!) с подробными комментариями по каждой операции. Также я сделал подробную 3D-модель в простой и бесплатной программе SketchUp. Так что всегда можно повертеть ее перед глазами и посмотреть непонятные места:


Электроника и программирование
Я сделал целый шилд, на котором установил, помимо разъемов сервоприводов и питания, переменные резисторы. Для удобства отладки. На самом деле достаточно при помощи макетки подвести сигналы к двигателям. Но у меня в итоге получился вот такой шилд, который (так уж сложилось) я заказал на заводе:

Вообще я сделал три разные программы под Arduino. Одна для управления с компьютера, одна для работы в демо-режиме и одна для управления кнопками и переменными резисторами. Самая интересная из них, конечно, первая. Я не буду приводить здесь код целиком - он доступен в онлайн .
Для управления необходимо скачать программу для компьютера. После ее запуска мышь переходит в режим управления рукой. Движение отвечает за перемещение по XY, колесико изменяет высоту, ЛКМ/ПКМ - захват, ПКМ+колесико - поворот манипулятора. И это на самом деле удобно. Это было на видео в начале статьи.
Исходники проекта