Контроль прочности бетона методом отрыва со скалыванием. Основные методы определения прочности тяжелого бетона на сжатие в сборных и монолитных бетонных и железобетонных конструкциях и изделиях Испытание бетона методом отрыва со скалыванием гост

В предлагаемой статье рассмотрены основные методы неразрушающего контроля прочности бетона, применяемые при обследовании конструкций зданий и сооружений. Приведены результаты экспериментов по сопоставлению данных, получаемых неразрушающими методами контроля и испытанием образцов. Показывается преимущество метода отрыва со скалыванием перед другими методами контроля прочности. Описываются мероприятия, без выполнения которых применение косвенных неразрушающих методов контроля недопустимо.

Требуется построить градуировочную зависимость?

Мы выполним все расчеты и поможем построить индивидуальную градуировочную зависимость. Напишите нам, заполните форму ниже.

Форма заявки

Прочность бетона на сжатие является одним из наиболее часто контролируемых параметров при строительстве и обследовании железобетонных конструкций. Имеется большое число методов контроля, применяемых на практике. Более достоверным, сточки зрения авторов, является определение прочности не по контрольным образцам (), изготовляемым из бетонной смеси, а по испытанию бетона конструкции после набора им проектной прочности. Метод испытания контрольных образцов позволяет оценить качество бетонной смеси, но не прочность бетона конструкции. Это вызвано тем, что невозможно обеспечить идентичные условия набора прочности (вибрирование, прогрев и др.) для бетона в конструкции и бетонных кубиков образцов.

Методы контроля по классификации разделены на три группы:

  1. Разрушающие;
  2. Прямые неразрушающие;
  3. Косвенные неразрушающие.

К методам первой группы относится упомянутый метод контрольных образцов, а также метод определения прочности путем испытания образцов, отобранных из конструкций. Последний является базовым и считается наиболее точным и достоверным. Однако при обследовании к нему прибегают довольно редко. Основными причинами этого являются существенное нарушение целостности конструкций и высокая стоимость исследований.

Таблица 1. Характеристики методов неразрушающего контроля прочности бетона.

Наименование метода Диапазон применения*, МПа Погрешность измерения**
1 Пластической деформации 5 ... 50 ± 30 ... 40%
2 Упругого отскока 5 ... 50 ± 50%
3 Ударного импульса 10 ... 70 ± 50%
4 Отрыва 5 ... 60 нет данных
5 Отрыва со скалыванием 5 ... 100 нет данных
6 Скалывания ребра 10 ... 70 нет данных
7 Ультразвуковой 10 ... 40 ± 30 ... 50%
* по требованием ГОСТ 17624 и ГОСТ 22690;
** по данным источника без построения частной градуировочной зависимости

В основном применяются методы неразрушающего контроля. При этом большая часть работ выполняется косвенными методами. Среди них наиболее распространенными на сегодняшний день являются ультразвуковой метод по , методы ударного импульса и упругого отскока по . Однако при использовании указанных методов редко соблюдаются требования стандартов по построению частных градуировочных зависимостей. Некоторые исполнители не знают этих требований. Другие знают, но не понимают, насколько велика ошибка результатов измерений при использовании зависимостей, заложенных или прилагаемых к прибору, вместо зависимости, построенной на конкретном исследуемом бетоне. Есть «специалисты», которые знают об указанных требованиях норм,но пренебрегают ими, ориентируясь на финансовую выгоду и неосведомленность заказчика в данном вопросе.

Про факторы, влияющие на ошибку измерения прочности без построения частных градуировочных зависимостей, написано много работ, в том числе приведенные в списке литературы . В табл. 1 представлены данные по максимальной погрешности измерений различными методами, приведенные в монографии по неразрушающему контролю бетона .

В дополнение к обозначенной проблеме использования несоответствующих («ложных») зависимостей обозначим еще одну, возникающую при обследовании. Согласно требованиям обеспечение выборки измерений (параллельных испытаний бетона косвенным и прямым методом) на более чем 30 участках является необходимым, но не достаточным для построения и использования градуировочной зависимости. Необходимо, чтобы полученная парным корреляционнорегрессионным анализом зависимость имела высокий коэффициент корреляции (более 0,7) и низкое СКО (менее 15% от средней прочности). Чтобы данное условие выполнялось, точность измерений обоих контролируемых параметров (например, скорость ультразвуковых волн и прочность бетона) должна быть достаточно высокой, а прочность бетона, по которому строится зависимость, должна изменяться в широком диапазоне.

При обследовании конструкций указанные условия выполняются редко. Во-первых, даже базовый метод испытания образцов нередко сопровождается высокой погрешностью. Во-вторых, за счет неоднородности бетона и других факторов прочность в поверхностном слое (исследуемая косвенным методом) может не соответствовать прочности того же участка на некоторой глубине (при использовании прямых методов). И наконец, при нормальном качестве бетонирования и соответствии класса бетона проектному в пределах одного объекта редко можно встретить однотипные конструкции с прочностью, изменяющейся в широком диапазоне (например, от В20 до В60). Таким образом, зависимость приходится строить по выборке измерений с малым изменением исследуемого параметра.


Рис. 1 . Зависимость между прочностью бетона и скоростью ультразвуковых волн

В качестве наглядного примера вышеуказанной проблемы рассмотрим градуировочную зависимость, представленную на рис.1. Линейная регрессионная зависимость построена по результатам ультразвуковых измерений и испытаний на прессе образцов бетона. Несмотря на большой разброс результатов измерений, зависимость имеет коэффициент корреляции 0,72, что допустимо по требованиям . При аппроксимации функциями, отличными от линейной (степенной, логарифмической и пр.) коэффициент корреляции был менее указанного. Если бы диапазон исследуемой прочности бетона был меньше, например от 30 до 40 МПа (область, выделенная красным цветом), то совокупность результатов измерений превратилась бы в «облако», представленное в правой части рис. 1. Данное облако точек характеризуется отсутствием связи между измеряемым и искомым параметрами, что подтверждается максимальным коэффициентом корреляции 0,36. Иными словами, градуировочную зависимость здесь не построить.

Также необходимо отметить, что на рядовых объектах количество участков измерения прочности для построения градуировочной зависимости сопоставимо с общим количеством измеряемых участков. В данном случае прочность бетона может быть определена по результатам только прямых измерений, а в градуировочной зависимости и использовании косвенных методов контроля уже не будет смысла.

Таким образом, без нарушения требований действующих норм для определения прочности бетона при обследовании в любом случае необходимо в том или ином объеме использовать прямые неразрушающие либо разрушающие методы контроля . Учитывая это, а также обозначенные выше проблемы, далее более подробно рассмотрим прямые методы контроля.

Метод отрыва со скалыванием занимает в ряду методов определения прочности бетона особое место. Считаясь неразрушающим методом, метод отрыва со скалыванием по своей сущности является разрушающим методом контроля бетона, так как прочность бетона оценивается по усилию, необходимому для разрушения небольшого объема бетона, что позволяет наиболее точно оценить его фактическую прочность. Поэтому этот метод применяется не только для определения прочности бетона неизвестного состава, но и может служить для построения градуировочных зависимостей для других методов неразрушающего контроля. Этот метод применяется на тяжелые бетоны и конструкционные бетоны на легких заполнителях в монолитных и сборных бетонных и железобетонных изделиях, конструкциях и сооружениях и устанавливает метод испытания бетона и определения его прочности на сжатие путем местного разрушения бетона при вырыве из него специального анкерного устройства. Такой метод испытания бетона отрыв со скалыванием позволяет определить прочность на сжатие для бетонов в диапазоне прочностей от 5,0 до 100,0 МПа. При разработке стандарта использованы материалы ГОСТ 22690-88.

Одним из наиболее распространенных и эффективных способов быстрого измерения прочности бетона на сжатие или его марку, является измерение склерометром, или как его еще называют, молоток Шмидта.

Соответствие Марки и Класса бетона показаниям шкалы склерометра (молотка Шмидта) по направлению удара в соответствии с графиком тарировочной кривой
Марка бетона, М Класс бетона,
B Вертикально сверху, ед Горизонтально, ед. Вертикально снизу, ед
М100 7,5 10 13 20
- 10 12 18 23
М150 12,5 20 24 28
М200 15 24 28 32
М250 20 30 34 38
М300 22,5 34 37 41
М350 27,5 38 41 45
М400 30 41 43 47
М450 35 44 47 50
М500 40 47 49 52
М600 45 49 52 55

ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам
ГОСТ 18105-86 Бетоны. Правила контроля прочности
ГОСТ 22690-88 Бетоны. Определения прочности механическими методами неразрушающего контроля

Еще один метод испытания бетона - отрыв со скалыванием. Данный метод заключается в определении степени усилия, которое необходимо для скалывания участка бетона на ребре конструкции. Иногда данный метод заключается в местном разрушении бетона: в рамках данного метода вырывается анкерное устройство. Метод отрыва со скалыванием - это самый точный, но и самый трудоемкий способ контроля, поскольку для установки анкера требуется подготовка специальных шпуров. Более того, такой метод недостаточно универсален: он неприменим в рядах конструкций.

«Прометей» рекомендует метод определения прочности бетона отрывом со скалыванием в натурных обследованиях. Такие методы испытания бетона отрывом также идеальны при освидетельствовании на этапах строительства, приемки, эксплуатации и реконструкции строительных объектов, а также при изготовлении сборных изделий на предприятиях производства железобетонных изделий.

Испытание механических свойств бетона в лабораторных условиях

Для таких материалов, как бетоны, определение прочности механическими методами неразрушающего контроля желателен контроль достоверности результатов путем сопоставления данных, полученных прямым и косвенным путем. Проведением такого рода исследований занимается лаборатория механических испытаний при ООО «Прометей».

В лабораторных условиях производятся физико-механические испытания образцов бетона с применением всех известных подходов, включая базовый разрушающий метод контроля бетона, методы ударного импульса и упругого отскока. Важно, чтобы измерения вел квалифицированный лаборант механических испытаний - влияние человеческого фактора должно быть сведено к минимуму.

Как показывают механические испытания материалов, косвенные методы механических испытаний завышают прочностные характеристики карбонизированного бетона на 40–60%, а наиболее достоверным признан метод отрыва со скалыванием.

Метод отрыва со скалыванием: преимущества и ограничения

Все современные стандарты включают в программу натурных обследований ЖБК механические испытания бетона отрыв со скалыванием.

На практике отрыв со скалыванием дает ряд преимуществ:

  • возможность установки приборов на плоские участки без ребра;
  • независимость от электроснабжения;
  • толерантность к низким температурам;
  • контроль прочности бетонов класса В50 и выше;
  • быстрое и удобное крепление оборудования.

Если кривизна блока не препятствует подключению прибора к анкеру, определение прочности бетона отрывом со скалыванием может производиться и на неровных бетонных поверхностях (от 5 мм). Густое армирование бетона затрудняет испытания на механическую прочность посредством данного метода; при этом толщина бетона в участке измерения не должна быть меньше удвоенной длины анкера.

Используемое оборудование

ПОС-50МГ4"Скол" предназначен для неразрушающего контроля прочности бетона методами скалывания ребра, отрыва со скалыванием и отрыва стальных дисков по ГОСТ 22690-88.

В этой статье мы рассмотрим несколько приборов, которые используются в строительстве, для того чтобы определять прочность бетона методом «Отрыва со скалыванием».

Данный метод позволяет определять прочность любого бетона из неизвестного состава в диапазоне прочностей от 5 до 100 МПа .

Метод «Отрыва со скалыванием » основан на локальном разрушении бетонной конструкции , при котором используется зависимость между приложенной силой и прочности конструкции. Для этого в бетон устанавливается анкерное устройство при заливке, либо после отвердения в высверленное отверстие. После чего, данное анкерное устройство вырывается из конструкции с небольшим куском бетона и в момент отрыва, измеряется приложенная сила, после чего, по полученным данным определяется прочность бетонной конструкции .

Не смотря на то, что при таком методе измерения прочности, из конструкции вырывается небольшая часть материала, данный метод «Отрыва со скалыванием » относится к типу неразрушающих методов оценки прочности бетонных конструкций, хотя и по факту локальное разрушение конструкции всё-таки происходит. А к разрушающим методам относится, например измерение прочности бетонных кубиков под специальным прессом, в процессе которого испытуемый кубик полностью разрушается.

И как раз на основе того, что измерение прочности происходит при непосредственном разрушении, данный метод позволяет получить самые точные результаты, на основе которых позже составляются таблицы для последующего построения зависимостей с результатами других испытаний.

Для проведения испытаний на прочность бетонной конструкции по методу «Отрыва со скалыванием », используется один из следующих приборов:

Каждый из этих приборов отличается друг от друга не только конструкцией, но и областью применения. Рассмотрим каждый из них.

Данный прибор предназначен для определения прочности, как лёгких бетонов , так и тяжёлых. Лёгкие бетоны определяются в диапазоне прочностей от 5 до 40 МПа , а тяжёлые в диапазоне от 10 до 100 МПа .

Для того чтобы использовать данный прибор, нужно соединить его рабочую часть с установленным в конструкцию анкером на глубину около 5,5 сантиметрови поворачивать ручку, которая задействует поршневой насос. Насос в свою очередь вырывает анкер из конструкции и в момент разрушения, считываются показания с установленного на прибор манометра, который в свою очередь может быть как аналоговым, так и электронным. При этом стандартная цена деления манометра равна 0.5 МПа .

Этот прибор чаще всего используется для проверки прочности ячеистого бетона любых строительных конструкций, а так же для проверки прочности пеноситалла и полистиролбетона .

Диапазон измерения прочности данной устройства от 0.5 до 8 МПа , что значительно меньше предыдущего прибора и именно поэтому используют лишь в редких случаях.

Это микропроцессорный прибор для измерения прочности бетона со скалыванием .

Применяют прибор как непосредственно при строительстве, так и при измерении прочности уже построенных зданий.

Данный прибор отличается от первых двух тем, что в него встроен электронный измеритель прилагаемой силы с последующей фиксацией максимального значения, цифровая индикация силы и давления в кН и МПа , а так же измеритель скорости нарастания нагрузки в процессе эксплуатации.

Ещё одна важная отличительная особенность данного прибора, это то, что в нём предусмотрены установки параметров бетона , такие как тяжёлый или лёгкий и предполагаемая прочность, больше или меньше 50 МПа . Такие настройки позволяют увеличить точность измерений и удобство эксплуатации.

Данный прибор по своим характеристикам и областью применения практически полностью совпадет с , но с некоторыми отличиями.

Во-первых, он имеет совершенно иную конструкцию, в которой рабочий цилиндр и насос имеют осевое расположение. А во-вторых, в нём встроено устройство для измерения проскальзывания анкера, а так же имеется возможность передачи полученных измерений на стационарный ПК.

И так же как и в предыдущем приборе, в есть возможность ввода параметров испытуемого бетона , таких как: вид и условия твердения бетона , крупность заполнителя, размер анкера и тип контролирующего изделия.

ПОС 50МГ4 «Скол» (ПОС 30МГ4 «Скол»)

Ещё одна разновидность двух предыдущих приборов, это разновидность «Скол ».

Данный прибор имеет сменные насадки, которые позволяют производить измерения прочности, как методом отрыва анкера, так и методом скалывания ребра конструкции.

По всем остальным параметрам данного прибора, он совпадает с прибором .

Данный прибор имеет практически те же характеристики, что и у, но при этом у него совершенно иная техническая конструкция.

Это прибор, выполненный из лёгких материалов, имеющий две рабочие опоры и двухцилиндровую конструкцию с автоматической установкой оси вырыва. А так же устройство исключающее проскальзывание анкера.

Способность бетона противостоять механическому и температурному воздействию называется прочностью. Эта важнейшая характеристика, влияющая на эксплуатационные параметры конструкции.

Все правила, касающиеся проведения испытаний бетона на растяжение, сжатие и изгиб прописаны в ГОСТ18105-86. Важной характеристикой надежности материала выступает коэффициент вариации, характеризующий однородность смеси (Vm).

где S m - квадратичное отклонение прочности, R m – прочность бетона в партии.

Согласно ГОСТ10180-67 определяется кубиковая прочность материала при сжатии. Она вычисляется при сжатии контрольных образцов-кубов, имеющих ребра жесткости в возрасте 28 дней. Для класса В25 и выше призменный показатель должен равняться 0,75, для составов классом ниже В25 – 0,8.

Требования по расчетной прочности кроме ГОСТов прописаны еще и в СНиПах. Например, распалубный показатель незагруженных горизонтальных конструкций, имеющих пролет менее 6 метров, должен быть не менее 70% от проектной прочности, если длина пролета превышает 6 метров – 80%.

Испытание образцов дает возможность определить качество смеси, но не характеристики бетона в составе конструкции. Проводятся такие исследования согласно ГОСТ18105-2010 и используют следующие методы:

  • разрушающие,
  • косвенные разрушающие,
  • прямые разрушающие.

Значительной популярностью пользуются прямые методы неразрушающего контроля. К основным методам данного типа относят ультразвуковые или механические.

Методы контроля прочности бетона по ГОСТ22690-88

  • отрыв;
  • отрыв со скалыванием;
  • скалывание ребра.

Инструменты, необходимые для проведения исследований

  • электронный блок;
  • прибор для отрыва с устройством для приклеивания к бетону;
  • датчики;
  • дюбели и анкеры;
  • эталонный металлический стержень.

График отражает набор прочности материала во времени, при этом линия A – это вакуумная обработка, B - естественное твердение, C – изменение показателя после прохождения вакуумной обработки.

Проверка прочности бетона методом отрыва

В основе данного типа исследования лежит измерение максимального усилия для отрыва части бетонной конструкции. Причем отрывающая нагрузка должна применяться к ровной поверхности путем приклеивания диска прибора. Для приклеивания используют клеевые составы на эпоксидной основе. В ГОСТ22690-88 указываются клеи ЭД16 и ЭД20 с цементным наполнителем. Также можно применять двухкомпонентные составы. Площадь отрыва определяется после проведения каждого испытания. После отрыва и вычисления усилия измеряют прочность бетона (Rbt) на растяжение. Используя эмпирическую зависимость и данный показатель, можно вычислить показатель R - прочность на сжатие. Для этого следует воспользоваться формулой:

Rbt = 0,5 (R^2)

Отрыв со скалыванием

После отвердения бетона в заранее высверленное отверстие ставят анкерное устройство, после чего вырывают его с частью бетона. Этот метод во многом схож с описанным ранее. Основное отличие - способ крепления инструмента к поверхности. Отрывающее усилие создается за счет лепестковых анкеров. Анкер укладывается в шпур и измеряется P - разрушающее усилие. В ГОСТ 22690 указан переход прочности бетонного состава на сжатие по формуле:

R = m1 * m2 *P,

где m2 – коэффициент перехода прочности на сжатие, зависящий от условий затвердевания и вида бетона, m1 – коэффициент, отражающие максимальные параметры большого заполнителя (сыпучие каменные материалы).

Ограничениями для использования данного способа исследования является густое армирование и незначительная толщина конструкции. Толщина поверхности должна превышать удвоенную длину анкера.

Метод скалывания ребра

Прочность бетона при данном методе определяется по усилию (P), требуемому для скалывания части конструкции, размещенной на ребре внешней стороны. Прибор крепится на поверхности с помощью анкерного болта с дюбелем. Для определения показателя используется следующая формула:

R = 0,058 * m * (30P + P2),

где под m понимают коэффициент, отражающий крупность заполнителя.

Ультразвуковой метод

Действие ультразвуковых приборов контроля основано на взаимосвязи между скоростью, с которой распространяются волны по конструкции и ее прочностью. На основе данного метода определено, что скорость, также как и время распространения волн отвечают прочности бетона.

Для сборных линейных конструкций применяется метод сквозного просвечивания. При этом ультразвуковые преобразователи располагаются с противоположных сторон конструкции. Плоские, многопустотные и ребристые плиты перекрытия, а также стеновые панели исследуют поверхностным просвечиванием, при котором волновой преобразователь (дефектоскоп) ставят с одной стороны конструкции.

Для обеспечения максимального акустического контакта с рабочей поверхностью выбирают вязкие контактные материалы (например, солидол). Возможен сухой вариант с применением протекторов и конусных насадок. Инсталляция ультразвуковых приборов производится на удалении не менее 3 см от края.

Испытания проводятся согласно ГОСТ22690.2-77. Определение прочности бетона производится в пределах 5-50 Мпа. По ровной испытываемой поверхности наносится удар, в результате чего образуются два отпечатка: на эталонном металлическом стержне и на поверхности основания. С каждым ударом стержень перемещают на 10 мм в отверстие корпуса молотка. Удары по основанию наносятся через белую копировальную бумагу. Для измерения отпечатков на бумаге используют угловой масштаб.

Для исследований на основе упругого отскока используют молоток Шмидта, пистолеты Борового, ЦНИИСКа, склерометр КМ со стержневым ударником. Взвод и пуск бойка происходят автоматически в момент прикосновения ударника к испытываемому основанию. Величина отскока бойка фиксируются специальным указателем на шкале аппарата.

5.1. Подготовка изделий и анкерного устройства для испытаний методом отрыва со скалыванием

5.1.1.Разметку участка изделия для проведения испытаний производят после визуального осмотра поверхности бетона (наличие видимых трещин, границ ярусов бетонирования, сколов и наплывов бетона) и определения расположения и глубины залегания арматуры.

5.1.2.Отверстие для заложения анкера сверлят в центрах арматурных ячеек после выявления арматурной сетки на расстоянии не менее 150мм от границ ярусов бетонирования при условии, что в радиусе 90мм от центра отверстия нет видимых дефектов (трещины, сколы и наплывы бетона).

Отверстие для заложения анкера должно быть не ближе 150 мм от края изделия и не ближе 70 мм от ближайшего арматурного стержня или закладной детали.

Расстояние между отверстиями (местами испытаний) должно быть не менее 200 мм, а глубина заложения анкера должна превышать размеры крупного заполнителя не менее чем в 1,2 раза.

5.1.3. Отверстия (шпуры) выполняют сверлильным, ударно-вращательным или ударным инструментом с энергией удара не более 2 Дж с использованием направляющей, обеспечивающей верти­кальность отверстия к опорной плоскости. Допускаемое отклонение от перпендикулярности не более 1:25.

Диаметр сверла (бура) должен составлять 16+0,5 мм для анкера ø 16x35 мм и 24...25 мм для анкеров ø 24x30 мм, ø 24x48 мм.

Отверстие (шпур) после сверления при необходимости откалибровать шлямбуром соответствующего диаметра, тщательно продуть сжатым воздухом, очистив от пыли и остатков бетона, после чего диаметр отверстия должен составлять 16+1 мм (24+1 мм).

Для образования отверстий допускается применять закладные пробки.

Глубина отверстия должна со­ставлять для анкерного устройства типа II, не менее:

55 мм (глубина заделки 48 мм);

45 мм (глубина заделки 35 мм);

40мм (глубина заделки 30 мм).

5.1.4. Навернуть на резьбовой хвостовик анкерного устройства тягу с микрометрической гайкой.

5.1.5 Заложить анкерное устройство с тягой в подготовленное отверстие до упора выравнивающей шайбы в поверхность бетона (рис. 5.1) и создать предварительное напряжение в зоне установки анкера, для чего ключом на 19 мм довернуть тягу по часовой стрелке, не допуская вытягивания анкера из отверстия. Затяжку произвести с усилием (момент затяжки 45...50 кг-м).

5.2 .Подготовка прибора для испытаний методом отрыва со укалыванием

5.2.1. Установить силовозбудитель в опорную плиту, совместив отверстие в силовозбудителе с осью защелки, и ввернуть вилочный захват в шток силовозбудителя.

5.2.2. Вращая рукоятку нагружения против часовой стрелки, привести силовозбудитель в исходное состояние, при этом вылет винта силовозбудителя в должен составлять 99± 1 мм.

5.2.3. Установить прибор опорами на поверхность изделия, завести вилочный захват под головку тяги и совместить его ось с осью тяги.

5.2.4. Поворачивая прибор вокруг тяги, найти устойчивое положение опор, при необходимости вывернуть один или два регулировочных винта до упора в поверхность изделия.

5.2.5. Выбрать зазоры между опорными поверхностями тяги и вилочного захвата, для чего довернуть вилочный захват в шток силовозбудителя.

5.2.6.Довернуть микрометрическую гайку до упора в поверхность изделия и нанести на бетон видимую риску напротив нулевого деления шкалы гайки.

5.2.7 Подключить электронный блок к разъему силовозбудителя, расположенному в крышке силовозбудителя (соединительный кабель прилагается) и включить питание. Индикатор при этом имеет вид:

5.2.8 Кнопками ,↓ переместить мигание на требуемый метод испытаний - «Отрыв со скалыванием» и нажать кнопку ВВОД,

с мигающим значением вида крупного заполнителя.

5.2.9 Кнопками ,↓вывести на индикатор требуемый вид заполнителя (гранитный, известняковый, гравийный) и нажать кнопку ВВОД.

В этом экране пользователь имеет возможность выбора типа изделия, подвергаемого испытаниям, для сохранения в архиве вместе с результатом измерения.

Затем, по миганию, кнопками ,↓и ВВОД ввести тип изделия, подвергаемого испытаниям, а затем тип применяемого анкерного устройства (ø 24x48, ø 24x30, ø16x35). При этом в формулу (3.1) для вычисления прочности бетона автоматически вводится значение коэффициента т 2

5.3 Выполнение испытаний методом отрыва со скалыванием

5.3.1 Выполнить испытание, для чего, равномерно вращая рукоятку нагружения по часовой стрелке, произвести нагружение анкера до контрольного усилия или до отрыва фрагмента бетона и зафиксировать нагрузку Р. После чего довернуть микрометрическую гайку до упора в поверхность бетона и определить величину проскаль­зывания анкера ∆h с точностью до ± 0,1мм (цена деления микрометрической гайки 0,1 мм)

В процессе испытаний скорость нагружения необходимо поддерживать в пределах 1,5... 3 кН/сек.

5.3.2 Скорость нагружения индицируется в верхней строке индикатора в виде символов >>>>>□□□□□□<<<<<.

Свечение символов >>> свидетельствует о необходимости увеличения скорости нагружения, поскольку она меньше 1,5 кН/сек. При скорости нагружения более 3 кН/сек светятся символы <<<.

Свечение крайнего левого символа □ соответствует скорости нагружения 1,5 кН/сек, крайнего правого символа □ соответствует 3 кН/сек.

5.3.3 Для получения соответствующей прочности бетона нажать кнопку ВВОД, при этом производится автоматическое вычисление прочности бетона по формуле (3.1), а индикатор имеет вид, например:

5.3.6 Нажатием кнопок (↓) ввести значение ∆h, считанное с микрометрической гайки, например 3,6 мм и, нажатием кнопки ВВОД, выполнить корректировку.

Индикатор при этом имеет вид, например:

R к =26,8МПа 0,9 Р к =33,69 кН

Значения R к и Р к заносятся в память прибора и маркируются типом изделия, датой и временем испытания.

5.3.7 Необходимое количество испытаний на одном участке:

Для анкеров с глубиной заделки 48 мм и 35 мм - одно испытание;

Для анкеров с глубиной заделки 30 мм - три испытания.

5.3.8. Для проведения повторных испытаний на том же изделии без изменения исходных данных необходимо повторно нажать кнопку ВВОД, произвести автоподстройку согласно п. 6.2.10. и выполнить испытания в соответствии сп. 5.3.1. ..5.3.6.

5.3.9. Результаты испытаний занести в протокол в соответствии с Приложением 2 настоящего Руководства.

5.4. Выполнение испытаний методом отрыва со скалыванием по индивидуальным градуировочным зависимостям

5.4.1. Войти в Режим 2, для чего после включения прибора нажать кнопку РЕЖИМ, кнопками или ↓ установить мигающее сообщение «Инд. зависим» и нажать кнопку ВВОД. Индикатор имеет вид:

5.4.2. Кнопками (↓) установить мигание требуемого метода - «Отрыв» (отрыв со скалыванием) и нажать кнопку ВВОД, после чего индикатор имеет вид:

5.4.4. Подготовить прибор к работе в соответствии с п.п. 6.2.1.. .6.2.7 и подключить электронный блок к силовозбудителю.

5.4.5. Нажатием кнопки ВВОД произвести автоподстройку прибора, после чего индикатор имеет вид, например:

>>> 04 P=00,00 кН

свидетельствующий о готовности прибора к работе.

5.4.6. Произвести испытания в соответствии с п.п. 5.3.1 ... 5.3.6.

Метод скалывания ребра

5.5. Подготовка изделия для испытаний методом скалывания ребра.

5.5.1. При испытании методом скалывания ребра на участке испытания не должно быть трещин, сколов бетона, наплывов или раковин высотой (глубиной) более 5 мм. Участки должны располагаться в зоне наименьших напряжений, вызываемых эксплуатационной нагрузкой или усилием обжатия предварительно напряженной арматуры.

5.6. Подготовка прибора для испытаний методом скалывания ребра

Внимание! Перед началом каждого испытания необходимо привести силовозбудитель в исходное состояние, вращая руко­ятку нагружения против часовой стрелки (вылет винта силовозбудителя в = 100 ± 1мм).

Значительное сопротивление вращению может свидетельст­вовать о нахождении поршня рабочего цилиндра в крайних по­ложениях, когда возможна поломка силовозбудителя.

Запрещается применение удлинительных рычагов.

5.6.1. Вставить силовозбудитель в корпус силовой рамы, совместив отверстие в силовозбудителе с осью защелки и, вращая рукоятку нагружения против часовой стрелки, привести силовозбудитель в исходное состояние, при этом вылет винта силовозбудителя в должен составлять 100± 1 мм.

5.6.2. Вращая штурвал против часовой стрелки вывернуть прижимной винт до упора пятки в кронштейн.

5.6.3. Ввести удлинительные штанги в отверстиях захватов и зафиксировать их фиксатором таким образом, чтобы размер С превышал размер грани контролируемого изделия не более чем на 45 мм.

5.6.4. Установить силовую раму с силовозбудителем на контролируемое изделие (см. рис. 5.2) и, вращая штурвал по часовой стрелке до упора пятки в изделие, закрепить его на изделии.

5.6.5. Вставить тягу со скобой в вилочный захват силовозбудителя.

5.6.6. Проверить положение скобы. Если зазор между скалывающей пластиной и изделием более Змм, необходимо тягу со скобой довернуть в шток (один оборот тяги соответствует перемещению скобы на 1мм), если нет зазора между скалывающей пластиной и изделием или размер а менее 20 ± 2мм необходимо отворачивая тягу со скобой на один оборот проверять появление зазора и совпадения размера а с требуемым значением - 20 ± 2мм.

5.6.7. Кнопками , ↓ переместить мигание на требуемый метод испытаний - «Скол ребра» и нажать кнопку ВВОД, после чего на индикаторе высвечивается максимальный размер крупного заполнителя (фракц.) в бетоне контролируемого изделия, с мигающим значением 20 мм.

5.6.8. Нажатием кнопок , ↓ установите мигание на требуемый (предлагаемый) размер заполнителя и нажать кнопку ВВОД. При этом в формулу (3.2) для вычисления прочности бетона вводится значение коэффициента m=1,0 (1,05 или 1,1) После чего индикатор имеет вид, например:

В этом экране пользователь имеет возможность выбора типа изделия, подвергаемого испытаниям, для сохранения в памяти вместе с результатом измерения.

Кнопками , ↓ вывести на индикатор тип изделия, подвергаемого испытаниям и нажать кнопку ВВОД.

5.6.9. По окончании ввода исходных данных на индикаторе высвечивается сообщение:

Если электронный блок подключен кабелем к силовозбудителю, нажатием кнопки ВВОД произвести автоподстройку прибора, после чего индикатор имеет вид, свидетельствующий о готовности прибора к проведению испытаний:

>>> 0,2 P= 00,00 кН

Рис. 5.2. Общий вид прибора ПОС-50МГ4 «Скол» в комплектации «Скалывание ребра»

5.7. Выполнение испытаний методом скалывания ребра

5.7.1. Произвести испытание, для чего вращать рукоятку нагружения по часовой стрелке таким образом, чтобы скорость нагружения находилась в пределах, установленных ГОСТ 22690 (от 0,5 до 1,5кН/сек).

Нагружение производится до разрушения бетона, либо до контроль­ного усилия.

5.7.2. Скорость нагружения индицируется в верхней строке ин­дикатора в процессе испытаний, одновременно с нагрузкой.

5.7.3. Для получения соответствующей прочности бетона необ­ходимо нажать кнопку ВВОД. При этом производится вычисление прочности бетона по формуле (3.2) и запоминание результата испы­таний. Индикатор имеет вид, например:

R k =38,3 МПа 0,2 P k = 18,74 кН

Значения R k и Р k заносятся в память прибора и маркируются типом изделия, датой и временем испытания.

5.7.4. Для проведения повторных испытаний на том же изделии без изменения исходных данных необходимо повторно нажать кнопку ВВОД, произвести автоподстройку согласно п. 5.6.10. и выполнить испытания в соответствии с п.п. 5.7.1...5.7.3.