Закон преломления лучей. Пособие по физике. Преломление света

Цель урока

Познакомить учащихся с закономерностями распространения света на границе раздела двух сред, дать объяснение этого явления с точки зрения волновой теории света.

№ п/п Этапы урока Время, мин Приемы и методы
1 Организационный момент 2
2 Проверка знаний 10 Работа на компьютере с тестом. Тест № 2
3 Объяснение нового материала по теме «Преломление света» 15 Лекция
4 Закрепление изученного материала 15 Работа на компьютере с рабочими листами. Модель «Отражение и преломление света»
5 Подведение итогов 2 Фронтальная беседа
6 Объяснение домашнего задания 1

Домашнее задание: § 61, задача № 1035, 1036.

Проверка знаний

Тест. Отражение света


Новый материал

Наблюдение преломления света.

На границе двух сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду, то есть происходит отражение света. Если вторая среда прозрачна, то свет частично может пройти через границу сред, также меняя при этом, как правило, направление распространения. Это явление называется преломлением света .

Вследствие преломления наблюдается кажущееся изменение формы предметов, их расположения и размеров. В этом нас могут убедить простые наблюдения. Положим на дно пустого непрозрачного стакана монету или другой небольшой предмет. Подвинем стакан так, чтобы центр монеты, край стакана и глаз находились на одной прямой. Не меняя положения головы, будем наливать в стакан воду. По мере повышения уровня воды дно стакана с монетой как бы приподнимается. Монета, которая ранее была видна лишь частично, теперь будет видна полностью. Установим наклонно карандаш в сосуде с водой. Если посмотреть на сосуд сбоку, то можно заметить, что часть карандаша, находящаяся в воде, кажется сдвинутой в сторону.

Эти явления объясняются изменением направления лучей на границе двух сред – преломлением света.

Закон преломления света определяет взаимное расположение падающего луча AB (см. рис.), преломленного DB и перпендикуляра CE к поверхности раздела сред, восставленного в точке падения. Угол α называется углом падения , а угол β – углом преломления .

Падающий, отраженный и преломленный лучи нетрудно наблюдать, сделав узкий световой пучок видимым. Ход такого пучка в воздухе можно проследить, если пустить в воздух немного дыма или же поставить экран под небольшим углом к лучу. Преломленный пучок также виден в подкрашенной флюоресцином воде аквариума.

Пусть на плоскую границу раздела двух сред (например, из воздуха в воду) падает плоская световая волна (см. рис.). Волновая поверхность AC перпендикулярна лучам A 1 A и B 1 B . Поверхности MN сначала достигнет луч A 1 A . Луч B 1 B достигнет поверхности спустя время Δt . Поэтому в момент, когда вторичная волна в точке B только начнет возбуждаться, волна от точки A уже имеет вид полусферы радиусом

Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную ко всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред. В данном случае это плоскость BD . Она является огибающей вторичных волн. Угол падения α луча равен CAB в треугольнике ABC (стороны одного из этих углов перпендикулярны сторонам другого). Следовательно,

Угол преломления β равен углу ABD треугольника ABD . Поэтому

Разделив почленно полученные уравнения, получим:

где n – постоянная величина, не зависящая от угла падения.

Из построения (см. рис.) видно, что падающий луч, луч преломленный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости. Данное утверждение вместе с уравнением, согласно которому отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред , представляет собой закон преломления света .

Убедиться в справедливости закона преломления можно экспериментально, измеряя углы падения и преломления и вычисляя отношение их синусов при различных углах падения. Это отношение остается неизменным.

Показатель преломления.
Постоянная величина, входящая в закон преломления света, называется относительным показателем преломления или показателем преломления второй среды относительно первой .

Из принципа Гюйгенса не только следует закон преломления. С помощью этого принципа раскрывается физический смысл показателя преломления. Он равен отношению скоростей света в средах, на границе между которыми происходит преломление:

Если угол преломления β меньше угла падения α , то, согласно (*), скорость света во второй среде меньше, чем в первой.

Показатель преломления среды относительно вакуума называют абсолютным показателем преломления этой среды . Он равен отношению синуса угла падения к синусу угла преломления при переходе светового луча из вакуума в данную среду.

Пользуясь формулой (**), можно выразить относительный показатель преломления через абсолютные показатели преломления n 1 и n 2 первой и второй сред.

Действительно, так как

и

где c – скорость света в вакууме, то

Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой .

Абсолютный показатель преломления определяется скоростью распространения света в данной среде, которая зависит от физического состояния среды, то есть от температуры вещества, его плотности, наличия в нем упругих напряжений. Показатель преломления зависит также и от характеристик самого света. Как правило, для красного света он меньше, чем для зеленого, а для зеленого меньше, чем для фиолетового.

Поэтому в таблицах значений показателей преломления для разных веществ обычно указывается, для какого света приведено данное значение n и в каком состоянии находится среда. Если таких указаний нет, то это означает, что зависимостью от указанных факторов можно пренебречь.

В большинстве случаев приходится рассматривать переход света через границу воздух – твердое тело или воздух – жидкость, а не через границу вакуум – среда. Однако абсолютный показатель преломления n 2 твердого или жидкого вещества отличается от показателя преломления того же вещества относительно воздуха незначительно. Так, абсолютный показатель преломления воздуха при нормальных условиях для желтого света равен приблизительно 1,000292. Следовательно,

Рабочий лист к уроку

Примерные ответы
«Преломление света»

В одном из древнегреческих трактатов описан опыт: «Надо встать так, чтобы плоское кольцо, расположенное на дне сосуда, спряталось за его краем. Затем, не меняя положения глаз, налить в сосуд воду. Свет преломится на поверхности воды, и кольцо станет видимым». Такой «фокус» вы можете показать своим друзьям и сейчас (см. рис. 12.1), а вот объяснить его сможете только после изучения данного параграфа.

Рис. 12.1. «Фокус» с монетой. Если в чашке нет воды, мы не видим монету, лежащую на ее дне (а); если же налить воду, дно чашки будто поднимется и монета станет видимой (б)

Устанавливаем законы преломления света

Направим узкий пучок света на плоскую поверхность прозрачного стеклянного полуцилиндра, закрепленного на оптической шайбе.

Свет не только отразится от поверхности полуцилиндра, но и частично пройдет сквозь стекло. Это означает, что при переходе из воздуха в стекло направление распространения света изменяется (рис. 12.2).

Изменение направления распространения света на границе раздела двух сред называют преломлением света.

Угол γ (гамма), который образован преломленным лучом и перпендикуляром к границе раздела двух сред, проведенным через точку падения луча, называют углом преломления.

Проведя ряд опытов с оптической шайбой, заметим, что с увеличением угла падения угол преломления тоже увеличивается, а с уменьшением угла падения угол преломления уменьшается (рис. 12.3). Если же свет падает перпендикулярно границе раздела двух сред (угол падения α = 0), направление распространения света не изменяется.

Первое упоминание о преломлении света можно найти в трудах древнегреческого философа Аристотеля (IV в. до н. э.), который задавался вопросом: «Почему палка в воде кажется сломанной?» А вот закон, количественно описывающий преломление света, был установлен только в 1621 г. голландским ученым Виллебрордом Снеллиусом (1580-1626).

Законы преломления света:

2. Отношение синуса угла падения к синусу угла преломления для двух данных сред является неизменной величиной:

где n 2 1 — физическая величина, которую называют относительным показателем преломления среды. 2 (среды, в которой свет распространяется после преломления) относительно среды 1 (среды, из которой свет падает).

Узнаём о причине преломления света

Так почему свет, переходя из одной среды в другую, изменяет свое направление?

Дело в том, что в разных средах свет распространяется с разной скоростью, но всегда медленнее, чем в вакууме. Например, в воде скорость света в 1,33 раза меньше, чем в вакууме; когда свет переходит из воды в стекло, его скорость уменьшается еще в 1,3 раза; в воздухе скорость распространения света в 1,7 раза больше, чем в стекле, и лишь немного меньше (примерно в 1,0003 раза), чем в вакууме.

Именно изменение скорости распространения света при переходе из одной прозрачной среды в другую является причиной преломления света.

Принято говорить об оптической плотности среды: чем меньше скорость распространения света в среде (чем больше показатель преломления), тем больше оптическая плотность среды.

Как вы считаете, оптическая плотность какой среды больше — воды или стекла? оптическая плотность какой среды меньше — стекла или воздуха?

Выясняем физический смысл показателя преломления

Относительный показатель преломления (n 2 1) показывает, во сколько раз скорость распространения света в среде 1 больше (или меньше) скорости распространения света в среде 2:

Вспомнив второй закон преломления света:

Проанализировав последнюю формулу, делаем выводы:

1) чем больше на границе раздела двух сред изменяется скорость распространения света, тем больше свет преломляется;

2) если луч света переходит в среду с большей оптической плотностью (то есть скорость света уменьшается: v 2 < v 1), то угол преломления меньше угла падения: γ<α (см., например, рис. 12.2, 12.3);

3) если луч света переходит в среду с меньшей оптической плотностью (то есть скорость света увеличивается: v 2 > v 1), то угол преломления больше угла падения: γ > а (рис. 12.4).


Обычно скорость распространения света в среде сравнивают со скоростью его распространения в вакууме. Когда свет попадает в среду из вакуума, показатель преломления n называют абсолютным показателем преломления.

Абсолютный показатель преломления показывает, во сколько раз скорость распространения света в среде меньше, чем в вакууме:

где c — скорость распространения света в вакууме (c=3 · 10 8 м/с); v — скорость распространения света в среде.

рис. 12.4. При переходе света из среды с большей оптической плотностью в среду с меньшей оптической плотностью угол преломления больше угла падения (γ>α)

Скорость распространения света в вакууме больше, чем в любой среде, поэтому абсолютный показатель преломления всегда больше единицы (см. таблицу).

Рис. 12.5. Если свет попадает из стекла в воздух, то при увеличении угла падения угол преломления приближается к 90°, а яркость преломленного пучка уменьшается

рассматривая переход света из воздуха в среду, будем считать, что относительный показатель преломления среды равен абсолютному.

Явление преломления света используется в работе многих оптических устройств. О некоторых из них вы узнаете позже.

Применяем явление полного внутреннего отражения света

Рассмотрим случай, когда свет переходит из среды с большей оптической плотностью в среду с меньшей оптической плотностью (рис. 12.5). Видим, что при увеличении угла падения (α 2 >«ι) угол преломления γ приближается к 90°, яркость преломленного пучка уменьшается, а яркость отраженного, наоборот, увеличивается. Понятно, что если и дальше увеличивать угол падения, то угол преломления достигнет 90°, преломленный пучок исчезнет, а падающий пучок полностью (без потерь энергии) вернется в первую среду — свет полностью отразится.

Явление, при котором преломление света отсутствует (свет полностью отражается от среды с меньшей оптической плотностью), называют полным внутренним отражением света.

Явление полного внутреннего отражения света хорошо знакомо тем, кто плавал под водой с открытыми глазами (рис. 12.6).

рис. 12.6. Наблюдателю, находящемуся под водой, часть поверхности воды кажется блестящей, будто зеркало

Ювелиры много веков используют явление полного внутреннего отражения, чтобы повысить привлекательность драгоценных камней. Естественные камни огранивают — придают им форму многогранников: грани камня выполняют роль «внутренних зеркал», и камень «играет» в лучах падающего на него света.

Полное внутреннее отражение широко используют в оптической технике (рис. 12.7). Но главное применение этого явления связано с волоконной оптикой. Если в торец сплошной тонкой «стеклянной» трубки направить пучок света, после многократного отражения свет выйдет на ее противоположном конце независимо от того, какой будет трубка — изогнутой или прямой. Такую трубку называют световодом (рис. 12.8).

Световоды применяют в медицине для исследования внутренних органов (эндоскопия); в технике, в частности для выявления неисправностей внутри двигателей без их разборки; для освещения солнечным светом закрытых помещений и т. п. (рис. 12.9).

Но чаще всего световоды используют в качестве кабелей для передачи информации (рис. 12.10). «Стеклянный кабель» намного дешевле и легче медного, он практически не изменяет свои свойства под воздействием окружающей среды, позволяет передавать сигналы на большие расстояния без усиления. Сегодня волоконно-оптические линии связи стремительно вытесняют традиционные. Когда вы будете смотреть телевизор или пользоваться Интернетом, вспомните, что значительную часть своего пути сигнал проходит по «стеклянной дороге».

Учимся решать задачи Задача. Световой луч переходит из среды 1 в среду 2 (рис. 12.11, а). Скорость распространения света в среде 1 равна 2,4 · 10 8 м/с. Определите абсолютный показатель преломления среды 2 и скорость распространения света в среде 2.

Анализ физической проблемы

Из рис. 12.11, а видим, что на границе раздела двух сред свет преломляется, значит, скорость его распространения изменяется.

Выполним пояснительный рисунок (рис. 12.11, б), на котором:

1) изобразим лучи, приведенные в условии задачи;

2) проведем через точку падения луча перпендикуляр к границе раздела двух сред;

3) обозначим α угол падения и γ — угол преломления.

Абсолютный показатель преломления — это показатель преломления относительно вакуума. Поэтому для решения задачи следует вспомнить значение скорости распространения света в вакууме и найти скорость распространения света в среде 2 (v 2).

Чтобы найти v 2 , определим синус угла падения и синус угла преломления.

Анализ решения. По условию задачи угол падения больше угла преломления, и это значит, что скорость света в среде 2 меньше скорости света в среде 1. Следовательно, полученные результаты реальны.

Подводим итоги

Световой пучок, падая на границу раздела двух сред, разделяется на два пучка. Один из них — отраженный — отражается от поверхности, подчиняясь законам отражения света. Второй — преломленный — проходит во вторую среду, изменяя свое направление.

Законы преломления света:

1. Луч падающий, луч преломленный и перпендикуляр к границе раздела двух сред, проведенный через точку падения луча, лежат в одной плоскости.

2. Для двух данных сред отношение синуса угла падения α к синусу угла преломления γ является неизменной величиной:

Причина преломления света — изменение скорости его распространения при переходе из одной среды в другую. Относительный показатель преломления n 2 i показывает, во сколько раз скорость распространения света в среде 1 больше (или меньше), чем скорость распространения света

в среде 2:

Когда свет попадает в среду из вакуума, показатель преломления n называют абсолютным показателем преломления: n = c / v .

Если при переходе света из среды 1 в среду 2 скорость распространения света уменьшилась (то есть показатель преломления среды 2 больше показателя преломления среды 1: n 2 > n 1), то говорят, что свет перешел из среды с меньшей оптической плотностью в среду с большей оптической плотностью (и наоборот).

Контрольные вопросы

1. Какие опыты подтверждают явление преломления света на границе раздела двух сред? 2. Сформулируйте законы преломления света. 3. В чем причина преломления света? 4. Что показывает показатель преломления света? 5. Как скорость распространения света связана с оптической плотностью среды? 6. Дайте определение абсолютного показателя преломления.

Упражнение № 12

1. Перенесите рис. 1 в тетрадь. Считая, что среда 1 имеет бо"льшую оптическую плотность, чем среда 2, для каждого случая схематически постройте падающий (или преломленный) луч, обозначьте угол падения и угол преломления.

2. Вычислите скорость распространения света в алмазе; воде; воздухе.

3. Луч света падает из воздуха в воду под углом 60°. Угол между отраженным и преломленным лучами равен 80°. Вычислите угол преломления луча.

4. Когда мы, стоя на берегу водоема, пытаемся на глаз определить его глубину, она всегда кажется меньше, чем на самом деле. Воспользовавшись рис. 2, объясните, почему это так.

5. За какое время свет доходит от дна озера глубиной 900 м до поверхности воды?

6. Объясните «фокус» с кольцом (монетой), описанный в начале § 12 (см. рис. 12.1).

7. Световой луч переходит из среды 1 в среду 2 (рис. 3). Скорость распространения света в среде 1 равна 2,5 · 10 8 м/с. Определите:

1) какая среда имеет большую оптическую плотность;

2) показатель преломления среды 2 относительно среды 1;

3) скорость распространения света в среде 2;

4) абсолютный показатель преломления каждой среды.

8. Следствием преломления света в атмосфере Земли является возникновение миражей, а также тот факт, что мы видим Солнце и звезды немного выше их реального положения. Воспользуйтесь дополнительными источниками информации и узнайте об этих природных явлениях подробнее.

Экспериментальные задания

1. «Фокус с монетой». Продемонстрируйте кому-нибудь из своих друзей или близких опыт с монетой (см. рис. 12.1) и объясните его.

2. «Водное зеркало». Понаблюдайте полное отражение света. Для этого заполните стакан примерно наполовину водой. Опустите в стакан какой-либо предмет, например корпус пластмассовой ручки, желательно с надписью. Держа стакан в руке, расположите его на расстоянии приблизительно 25—30 см от глаз (см. рисунок). В ходе опыта вы должны следить за корпусом ручки.

Сначала, подняв глаза, вы будете видеть весь корпус ручки (как подводную, так и надводную части). Медленно передвигайте от себя стакан, не изменяя высоты его расположения.

Когда стакан будет достаточно удален от ваших глаз, поверхность воды станет для вас зеркальной — вы увидите зеркальное отражение подводной части корпуса ручки.

Объясните наблюдаемое явление.

ЛАБОРАТОРНАЯ РАБОТА № 4

Тема. Исследование преломления света.

Цель: определить показатель преломления стекла относительно воздуха.

Оборудование: стеклянная пластинка с параллельными гранями, карандаш, угольник с миллиметровой шкалой, циркуль.

УКАЗАНИЯ К РАБОТЕ

Подготовка к эксперименту

1. Перед выполнением работы вспомните:

1) требования безопасности при работе со стеклянными предметами;

2) законы преломления света;

3) формулу для определения показателя преломления.

2. Подготовьте рисунки для выполнения работы (см. рис. 1). Для этого:

1) положите стеклянную пластинку на страницу тетради и остро заточенным карандашом очертите контур пластинки;

2) на отрезке, соответствующем положению верхней преломляющей грани пластинки:

Отметьте точку О;

Проведите через точку О прямую k, перпендикулярную данному отрезку;

С помощью циркуля постройте окружность радиусом 2,5 см с центром в точке О;

3) под углом примерно 45° начертите луч, который будет задавать направление пучка света, падающего в точку О; обозначьте точку пересечения луча и окружности буквой А;

4) повторите действия, описанные в пунктах 1-3, еще дважды (выполните еще два рисунка), сначала увеличив, а затем уменьшив заданный угол падения луча света.


Эксперимент

Строго соблюдайте инструкцию по безопасности (см. форзац учебника).

1. Наложите стеклянную пластинку на первый контур.

2. Глядя на луч АО сквозь стекло, у нижней грани пластинки поставьте точку М так, чтобы она казалась расположенной на продолжении луча АО (рис. 2).

3. Повторите действия, описанные в пунктах 1 и 2, еще для двух контуров.

Обработка результатов эксперимента

Результаты измерений и вычислений сразу заносите в таблицу.

Для каждого опыта (см. рис. 3):

1) проведите преломленный луч OM;

2) найдите точку пересечения луча OM с окружностью (точку Б);

3) из точек A и Б опустите перпендикуляры на прямую k, измерьте длины а и b полученных отрезков и радиус окружности г;

4) определите показатель преломления стекла относительно воздуха:


Анализ эксперимента и его результатов

Проанализируйте эксперимент и его результаты. Сформулируйте вывод, в котором укажите: 1) какую физическую величину вы определяли; 2) какой результат получили; 3) зависит ли значение полученной величины от угла падения света; 4) в чем причины возможной погрешности эксперимента.

Творческое задание

Воспользовавшись рис. 4, продумайте и запишите план проведения эксперимента по определению показателя преломления воды относительно воздуха. По возможности проведите эксперимент.

Задание «со звездочкой»

где п изм — полученное во время эксперимента значение показателя преломления стекла относительно воздуха; n — табличное значение абсолютного показателя преломления стекла, из которого изготовлена пластинка (выясните у учителя).

Это материал учебника

На границе раздела двух прозрачных сред наряду с отражением света наблюдается его преломление свет, переходя в другую среду, меняет направление своего распространения.

Преломление светового луча происходит при его наклонном падении на поверхность раздела (правда, не всегда читайте дальше про полное внутреннее отражение). Если же луч падает перпендикулярно поверхности, то преломления не будет во второй среде луч сохранит своё направление и также пойдёт перпендикулярно поверхности.

4.3.1 Закон преломления (частный случай)

Мы начнём с частного случая, когда одна из сред является воздухом. Именно такая ситуация присутствует в подавляющем большинстве задач. Мы обсудим соответствующий частный случай закона преломления, а уж затем дадим самую общую его формулировку.

Предположим, что луч света, идущий в воздухе, наклонно падает на поверхность стекла, воды или какой-либо другой прозрачной среды. При переходе в среду луч преломляется, и его дальнейший ход показан на рис.4.11 .

Среда O

Рис. 4.11. Преломление луча на границе ¾воздух–среда¿

В точке падения O проведён перпендикуляр (или, как ещё говорят, нормаль) CD к поверхности среды. Луч AO, как и раньше, называется падающим лучом, а угол между падающим лучом и нормалью углом падения. Луч OB это преломлённый луч; угол между преломлённым лучом и нормалью к поверхности называется углом преломления.

Всякая прозрачная среда характеризуется величиной n, которая называется показателем преломления этой среды. Показатели преломления различных сред можно найти в таблицах. Например, для стекла n = 1;6, а для воды n = 1;33. Вообще, у любой среды n > 1; показатель преломления равен единице только в вакууме. У воздуха n = 1;0003, поэтому для воздуха с достаточной точностью можно полагать в задачах n = 1 (в оптике воздух не сильно отличается от вакуума).

Закон преломления (переход ¾воздух–среда¿).

1) Падающий луч, преломлённый луч и нормаль к поверхности, проведённая в точке падения, лежат в одной плоскости.

2) Отношение синуса угла падения к синусу угла преломления равно показателю преломле-

ния среды:

Поскольку n > 1, из соотношения (4.1 ) следует, что sin > sin , то есть > угол преломления меньше угла падения. Запоминаем: переходя из воздуха в среду, луч после преломления идёт ближе к нормали.

Показатель преломления непосредственно связан со скоростью v распространения света в данной среде. Эта скорость всегда меньше скорости света в вакууме: v < c. И вот оказывается,

Почему так получается, мы с вами поймём при изучении волновой оптики. А пока скомби-

нируем формулы (4.1 ) и (4.2 ):

Так как показатель преломления воздуха очень близок единице, мы можем считать, что скорость света в воздухе примерно равна скорости света в вакууме c. Приняв это во внимание и глядя на формулу (4.3 ), делаем вывод: отношение синуса угла падения к синусу угла преломления равно отношению скорости света в воздухе к скорости света в среде.

4.3.2 Обратимость световых лучей

Теперь рассмотрим обратный ход луча: его преломление при переходе из среды в воздух. Здесь нам окажет помощь следующий полезный принцип.

Принцип обратимости световых лучей. Траектория луча не зависит от того, в прямом или обратном направлении распространяется луч. Двигаясь в обратном направлении, луч пойдёт в точности по тому же пути, что и в прямом направлении.

Согласно принципу обратимости, при переходе из среды в воздух луч пойдёт по той же самой траектории, что и при соответствующем переходе из воздуха в среду (рис. 4.12 ) Единственное отличие рис.4.12 от рис.4.11 состоит в том, что направление луча поменялось на противоположное.

Среда O

Рис. 4.12. Преломление луча на границе ¾среда–воздух¿

Раз геометрическая картинка не изменилась, той же самой останется и формула (4.1 ): отношение синуса угла к синусу угла по-прежнему равно показателю преломления среды. Правда, теперь углы поменялись ролями: угол стал углом падения, а угол углом преломления.

В любом случае, как бы ни шёл луч из воздуха в среду или из среды в воздух работает следующее простое правило. Берём два угла угол падения и угол преломления; отношение синуса большего угла к синусу меньшего угла равно показателю преломления среды.

Теперь мы целиком подготовлены для того, чтобы обсудить закон преломления в самом общем случае.

4.3.3 Закон преломления (общий случай)

Пусть свет переходит из среды 1 с показателем преломления n1 в среду 2 с показателем преломления n2 . Среда с б´ольшим показателем преломления называется оптически более плотной; соответственно, среда с меньшим показателем преломления называется оптически менее плотной.

Переходя из оптически менее плотной среды в оптически более плотную, световой луч после преломления идёт ближе к нормали (рис. 4.13 ). В этом случае угол падения больше угла преломления: > .

Рис. 4.13. n1 < n2 ) >

Наоборот, переходя из оптически более плотной среды в оптически менее плотную, луч отклоняется дальше от нормали (рис. 4.14 ). Здесь угол падения меньше угла преломления:

Рис. 4.14. n1 > n2 ) <

Оказывается, оба этих случая охватываются одной формулой общим законом преломления, справедливым для любых двух прозрачных сред.

Закон преломления.

1) Падающий луч, преломлённый луч и нормаль к поверхности раздела сред, проведённая

в точке падения, лежат в одной плоскости.

2) Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления второй среды к показателю преломления первой среды:

Нетрудно видеть, что сформулированный ранее закон преломления для перехода ¾воздух– среда¿ является частным случаем данного закона. В самом деле, полагая в формуле (4.4 ) n1 = 1 и n2 = n, мы придём к формуле (4.1 ).

Вспомним теперь, что показатель преломления это отношение скорости света в вакууме к скорости света в данной среде: n1 = c=v1 , n2 = c=v2 . Подставляя это в (4.4 ), получим:

Формула (4.5 ) естественным образом обобщает формулу (4.3 ). Отношение синуса угла падения к синусу угла преломления равно отношению скорости света в первой среде к скорости света во второй среде.

4.3.4 Полное внутреннее отражение

При переходе световых лучей из оптически более плотной среды в оптически менее плотную наблюдается интересное явление полное внутреннее отражение. Давайте разберёмся, что это такое.

Будем считать для определённости, что свет идёт из воды в воздух. Предположим, что в глубине водоёма находится точечный источник света S, испускающий лучи во все стороны. Мы рассмотрим некоторые из этих лучей (рис. 4.15 ).

S B 1

Рис. 4.15. Полное внутреннее отражение

Луч SO1 падает на поверхность воды под наименьшим углом. Этот луч частично преломляется (луч O1 A1 ) и частично отражается назад в воду (луч O1 B1 ). Таким образом, часть энергии падающего луча передаётся преломлённому лучу, а оставшаяся часть энергии отражённому лучу.

Угол падения луча SO2 больше. Этот луч также разделяется на два луча преломлённый и отражённый. Но энергия исходного луча распределяется между ними по-другому: преломлённый луч O2 A2 будет тусклее, чем луч O1 A1 (то есть получит меньшую долю энергии), а отражённый луч O2 B2 соответственно ярче, чем луч O1 B1 (он получит б´ольшую долю энергии).

По мере увеличения угла падения прослеживается та же закономерность: всё б´ольшая доля энергии падающего луча достаётся отражённому лучу, и всё меньшая преломлённому лучу. Преломлённый луч становится всё тусклее и тусклее, и в какой-то момент исчезает совсем!

Это исчезновение происходит при достижении угла падения 0 , которому отвечает угол преломления 90 . В данной ситуации преломлённый луч OA должен был бы пойти параллельно поверхности воды, да идти уже нечему вся энергия падающего луча SO целиком досталась отражённому лучу OB.

При дальнейшем увеличении угла падения преломлённый луч и подавно будет отсутствовать.

Описанное явление и есть полное внутреннее отражение. Вода не выпускает наружу лучи с углами падения, равными или превышающими некоторое значение 0 все такие лучи целиком отражаются назад в воду. Угол0 называется предельным углом полного отражения.

Величину 0 легко найти из закона преломления. Имеем:

sin 0

Но sin 90 = 1, поэтому

sin 0

0 = arcsin

Так, для воды предельный угол полного отражения равен:

0 = arcsin1; 1 33 48;8:

Явление полного внутреннего отражения вы легко можете наблюдать дома. Налейте воду в стакан, поднимите его и смотрите на поверхность воды чуть снизу сквозь стенку стакана. Вы увидите серебристый блеск поверхности вследствие полного внутреннего отражения она ведёт себя подобно зеркалу.

Важнейшим техническим применением полного внутреннего отражения является волоконная оптика. Световые лучи, запущенные внутрь оптоволоконного кабеля (световода) почти параллельно его оси, падают на поверхность под большими углами и целиком, без потери энергии отражаются назад внутрь кабеля. Многократно отражаясь, лучи идут всё дальше и дальше, перенося энергию на значительное расстояние. Волоконно-оптическая связь применяется, например, в сетях кабельного телевидения и высокоскоростного доступа в Интернет.

Преломление света – это изменение направления луча на границе двух сред разной плотности.

Пояснение: луч света, упав в воду, меняет свое направление на границе двух сред (то есть на поверхности воды). Луч буквально преломляется. Это явление и называют преломлением света. Оно происходит из-за того, что у воды и воздуха разные плотности. Вода плотнее воздуха, и у луча света, упавшего на ее поверхность, замедляется скорость. Таким образом, вода – оптически более плотная среда.

Оптическая плотность среды характеризуется различной скоростью распространения света.

Угол преломления (ϒ) – это угол, образуемый преломленным лучом и перпендикуляром к точке падения луча на поверхности раздела двух сред.

Пояснение:

Луч упал на поверхность воды в какой-то определенной точке и преломился. Проведем от этой точки перпендикуляр в ту же сторону, в какую «ушел» преломленный луч – в нашем случае перпендикуляр направлен в сторону дна водоема. Угол, образуемый этим перпендикуляром и преломленным лучом, и называют углом преломления.

Если свет идет из оптически менее плотной среды в оптически более плотную среду, то угол преломления всегда меньше угла падения.

Например, у света, падающего в воду, угол падения больше угла преломления. Причина в том, что вода – более плотная среда, чем воздух.

Для любых двух сред с различной оптической плотностью верна формула:

sin α
--- = n
sin ϒ

где n – постоянная величина, не зависящая от угла падения.

Пояснение:

Возьмем три луча, падающих в воду.

Их углы падения равны 30°, 45° и 60°.

Углы преломления этих лучей составят соответственно 23°, 33° и 42°.

Если составить соотношение углов падения и углов преломления, то получим одно и то же число:

sin 30° sin 45° sin 60°
--- = --- = --- ≅ 1,3
sin 23° sin 33° sin 42°

Таким образом, если мы разделим угол падения луча в воду и угол его преломления, то получим 1,3. Это постоянная величина (n ), которую и находят с помощью приведенной выше формулы.

Падающий луч, преломленный луч и перпендикуляр, проведенный от точки падения луча, лежат в одной плоскости.

Одним из важных законов распространения световой волны в прозрачных веществах является закон преломления, сформулированный в начале XVII века голландцем Снеллом. Параметрами, фигурирующими в математической формулировке явления преломления, являются показатели и углы преломления. В данной статье рассмотрено, как ведут себя при переходе через поверхность разных сред.

Что собой представляет явление преломления?

Главное свойство любой электромагнитной волны - это ее прямолинейное движение в гомогенном (однородном) пространстве. При возникновении любой неоднородности волна испытывает в большей или меньшей мере отклонение от прямолинейной траектории. Этой неоднородностью может быть наличие сильного гравитационного или электромагнитного поля в определенной области пространства. В данной статье эти случаи не будут рассмотрены, а будет уделено внимание именно неоднородностям, связанным с веществом.

Эффект преломления луча света в его классической формулировке означает резкое изменение одного прямолинейного направления движения этого луча на другое при переходе через поверхность, разграничивающую две разные прозрачные среды.

Следующие примеры удовлетворяют данному выше определению:

  • переход луча из воздуха в воду;
  • из стекла в воду;
  • из воды в алмаз и т. д.

Почему возникает это явление?

Единственной причиной, обуславливающей описанный эффект, является различие скоростей движения электромагнитных волн в двух разных средах. Если такого различия не будет, или оно будет несущественным, то при переходе через поверхность раздела луч сохранит свое первоначальное направление распространения.

Разные прозрачные среды имеют различную физическую плотность, химический состав, температуру. Все эти факторы сказываются на скорости света. Например, явление миража - это прямое следствие преломления света в нагретых до разных температур слоях воздуха вблизи земной поверхности.

Главные законы преломления

Этих законов два, причем их может проверить каждый, если вооружится транспортиром, лазерной указкой и толстым куском стекла.

Перед тем как сформулировать их, стоит ввести некоторые обозначения. Показатель преломления записывают символом n i , где i - идентифицирует соответствующую среду. Угол падения обозначают символом θ 1 (тета один), угол преломления- θ 2 (тета два). Оба угла отсчитываются относительно не плоскости раздела, а нормали к ней.

Закон № 1. Нормаль и два луча (θ 1 и θ 2) лежат в одной плоскости. Этот закон полностью аналогичен 1-му закону для отражения.

Закон № 2. Для явления преломления всегда справедливо равенство:

В приведенной форме это соотношение запомнить проще всего. В других формах оно выглядит менее удобно. Ниже приводятся еще два варианта записи закона №2:

sin (θ 1) / sin (θ 2) = n 2 / n 1 ;

sin (θ 1) / sin (θ 2) = v 1 / v 2 .

Где v i - скорость волны в i-той среде. Вторая формула легко получается из первой прямой подстановкой выражения для n i:

Оба приведенных закона являются результатом многочисленных опытов и обобщений. Однако их можно математически получить, пользуясь так называемым принципом наименьшего времени или принципом Ферма. В свою очередь, принцип Ферма выводится из принципа Гюйгенса - Френеля о вторичных источниках волн.

Особенности закона № 2

n 1 * sin (θ 1) = n 2 * sin (θ 2).

Видно, что чем больше показатель n 1 (плотная оптическая среда, в которой скорость света сильно уменьшается), тем ближе будет θ 1 к нормали (функция sin (θ) монотонно возрастает на отрезке ).

Показатели преломления и скорости движения электромагнитных волн в средах - это табличные величины, измеренные экспериментально. Например, для воздуха n составляет 1,00029, для воды - 1,33, для кварца - 1,46, а для стекла - около 1,52. Сильно свет замедляет свое движение в алмазе (почти в 2,5 раза), его показатель преломления равен 2,42.

Приведенные цифры говорят, что любой переход луча из отмеченных сред в воздух будет сопровождаться увеличением угла (θ 2 >θ 1). При изменении направления луча справедлив обратный вывод.

Показатель преломления зависит от частоты волны. Указанные выше цифры для разных сред соответствуют длине волны 589 нм в вакууме (желтый цвет). Для синего света эти показатели будут несколько больше, а для красного - меньше.

Стоит отметить, что угол падения равен луча только в одном единственном случае, когда показатели n 1 и n 2 одинаковые.

Луч переходит из воздуха в стекло или воду

Стоит рассмотреть два случая для каждой среды. Можно взять для примера углы падения 15 o и 55 o на границу стекла и воды с воздухом. Угол преломления в воде или в стекле можно рассчитать по формуле:

θ 2 = arcsin (n 1 / n 2 * sin (θ 1)).

Первой средой в данном случае является воздух, то есть n 1 = 1,00029.

Подставляя в выражение выше известные углы падения, получится:

  • для воды:

(n 2 = 1,33): θ 2 = 11,22 o (θ 1 = 15 o) и θ 2 = 38,03 o (θ 1 = 55 o);

  • для стекла:

(n 2 = 1,52): θ 2 = 9,81 o (θ 1 = 15 o) и θ 2 = 32,62 o (θ 1 = 55 o).

Полученные данные позволяют сделать два важных вывода:

  1. Поскольку угол преломления из воздуха в стекло меньше, чем для воды, то стекло изменяет направление движения лучей несколько сильнее.
  2. Чем больше угол падения, тем сильнее от первоначального направления отклоняется луч.

Свет движется из воды или стекла в воздух

Любопытно рассчитать, чему равен угол преломления для такого обратного случая. Расчетная формула остается той же самой, что и в предыдущем пункте, только теперь показатель n 2 = 1,00029, то есть, соответствует воздуху. Получится

  • при движении луча из воды:

(n 1 = 1,33): θ 2 = 20,13 o (θ 1 = 15 o) и θ 2 = не существует (θ 1 = 55 o);

  • при движении луча из стекла:

(n 1 = 1,52): θ 2 = 23,16 o (θ 1 = 15 o) и θ 2 = не существует (θ 1 = 55 o).

Для угла θ 1 = 55 o не получается определить соответствующий θ 2 . Связано это с тем, что он оказался больше 90 o . Эта ситуация называется полным отражением внутри оптически плотной среды.

Этот эффект характеризуется критическими углами падения. Рассчитать их можно, приравняв в законе № 2 sin (θ 2) единице:

θ 1c = arcsin (n 2 / n 1).

Подставляя в это выражение показатели для стекла и воды, получится:

  • для воды:

(n 1 = 1,33): θ 1c = 48,77 o ;

  • для стекла:

(n 1 = 1,52): θ 1c = 41,15 o .

Любой угол падения, который будет больше полученных значений для соответствующих прозрачных сред, приведет к эффекту полного отражения от поверхности раздела, то есть преломленного луча не будет существовать.