Плоская катушка. Экзотические катушки индуктивности Намотать плоскую индукционную катушку какой использовать клей

Уже более ста лет прошло со дня изобретения радио. За это время схемотехника проделала огромный путь от детекторных приемников на "магических кристаллах" до супергетеродинов с цифровой обработкой сигнала. В начале этого пути изобретались экзотические способы намотки катушек индуктивности. Ведь в то время радиолюбитель не имел возможности найти подходящую пластмассовую баночку от витаминов и использовать ее в качестве каркаса. Кроме того детекторный приемник имеет избирательную цепь, включающую в себя только одну катушку, и для увеличения избирательности следует добиваться максимальной ее добротности.

Одним из таких раритетов является катушка с типом намотки - "паутинка" (spyderweb). Это обычная плоская спиральная катушка, для удобства намотки которой изготавливается специальный шаблон. В результате намотка напоминает по форме паутину, которую плетет паук.

Помимо того, что такая катушка играет роль контурной, она же является рамочной антенной. Ведь в начале XX-го века ферритовые антенны еще не были доступны. На Западе и сейчас существуют клубы любителей и коллекционеров такого радио-антиквариата. Проводятся даже выставки-соревнования конструкторов детекторных приемников, в которых участвуют не только ровесники Радио, но и относительно молодые задроты. Все потому, что в этом сообществе вращаются хорошие деньги, достаточно упомянуть, что на eBay паутинные катушки продают около 60$ за штуку, а сам такой антиквариат доходит по стоимости до нескольких тысяч долларов.

Второй тип намотки - "корзиночная" (basket). Шаблон для намотки такой катушки похож по конструкции на шаблон "паутинки", только "корзинка" не плоская, а в виде соленоида.
В качестве антенны ее уже использовать нельзя, однако она отличается более высокой добротностью и меньшей собственной емкостью, по сравнению с соленоидом намотанным на каркасе. Можно вложить такие корзинки одна в другую, и мы получаем многослойную катушку. Фанаты Arduino хорошо знакомы с так называемой breadboard (хлебной доской) - макетной платой. На рисунке вверху можно видеть откуда взялось это название, ведь такой антиквариат делался и делается на реальных деревянных "хлебных досках" со стойками.

Третий тип намотки - "медовые соты" (honeycomb). Предназначена для намотки многослойных катушек. Катушки с такой намоткой имеют меньшую собственную емкость, особенно если катушку разбить на секции.
Такая намотка явилась прототипом для промышленной намотки типа "универсаль". Чтобы немного отодвинуть витки соседних слоев друг от друга для улучшения качества катушки применяют провод с дополнительной шелковой изоляцией (ПЭЛШО). Конечно межвитковое расстояние меньше, чем у "сотовой" катушки, но все же. Такие катушки мы с вами можем найти в старых радиолах в качестве контурных ДВ диапазона.

В данной статье речь пойдет о ручном способе намотки небольшой и плоской бескаркасной катушки тонким медным проводом. Такая катушка может пригодится для помещения в узкое пространство где нужна маленькая толщина.

В ящике у меня долго валялся нерабочий старый будильник советского производства у которого была повреждена вся электронная часть, остался только механизм. А вспомнил я про него тогда, когда мне понадобилось собрать устройство для определения емкости аккумуляторов. Статьи про это устройство и про доработку электромеханических часов Вы можете посмотреть по ссылкам:

Так вот при изучении было выявлено что для работы таких часов, что бы привести в движение маятник, нужен генератор и катушка.На просторах интернета нашел несколько простых схем генераторов, но как быть с катушкой, которая должна быть вклеена в печатную плату и иметь небольшую толщину для свободного движения маятника?!

Хочу поделится опытом и рассказать как я сделал каркас и намотал данную катушку, покажу какие материалы использовал, а уж дальше сами решайте из чего вам будет удобнее собирать это нехитрое приспособление и каким способом закреплять конструкцию. Я использовал только то, что было под рукой и ничего не покупал. Из материалов нам понадобится:

  • две пластмассовые пробки диаметром чуть больше будущей катушки;
  • длинный винт с гайкой и шайбами;
  • пластмассовая трубка с внутренним диаметром равным диаметру винта;
  • шило, нож, скотч, клей и собственно провод для намотки.

В обеих пробках по центру нужно проделать отверстия по диаметру используемого винта. Я применил для этой цели обычное шило.

После этого на обе пробки наклеивается скотч и в нем тоже делаются отверстия. В дальнейшем с помощью скотча будет легче снять готовую катушку с конструкции.

От пластмассовой трубки ровно, острым ножом нужно отрезать кружочек по толщине будущей катушки. Наш винт просовываем через одну пробку, надеваем на него вырезанный кружочек, который будет задавать толщину намотки, и просовывая через вторую пробку закрепляем всю конструкцию и стягиваем гайкой.


После сборки каркаса можно приступать к намотке самой катушки. В моем случае нужен был отвод от середины, поэтому я мотал одновременно с двух бабин двумя медными проводами сложенными вместе.

Перед самым началом процесса намотки необходимо смазать клеем зазор между щечками каркаса в месте будущей катушки что бы ее витки склеились друг с другом. Я использовал клей, который был под рукой - это обычный универсальный клей застывающий под действием активатора. Начало проводов я закрепил намотав небольшое количество на винт. Далее начинаем намотку, во время которой провод полностью проходит через клей и тем самым покрывается тонким слоем обеспечивая надежное скрепление после застывания.

Один небольшой ньюанс, который помог мне определить момент завершения намотки. Я специально использовал прозрачные пробки из всех имеющихся, что бы во время намотки сквозь пробку видеть какое количества провода намотано и сколько еще нужно намотать.

После завершения намотки конец проводов я так же закрепил на винте.

Используя активатор я затвердил клей и отвинтил стягивающую гайку с винта разобрав каркас.

Готовую катушку я вклеил в плату и использовал по назначению.

Коротко о том где можно взять материалы для поделки. Пластмассовые пробки я выкрутил с бутылок из под шампуня. Винт снял со старого лентопротяжного механизма. Пластмассовая трубка была извлечена из банки от дезодоранта. Провод я использовал диаметра 0.06 мм. от старого электромагнитного реле.

Желаю терпения и удачи!

Патент этот я выбрал по нескольким причинам. Очень многие, не понимая сути изобретения, часто бросают реплику "попробуй использовать бифилярки Теслы, - получишь хороший прирост КПД в своих устройствах". Причём, люди эти, даже отдалённо не предполагают, почему, собственно, такой способ намотки, вдруг, делает катушку более эффективной. Ведь, если приглядеться, то становится понятно, что ток направлен всегда в одну сторону (например, по часовой стрелке) во всех витках, - и чётных, относящихся к одной намотке, и не чётных, относящихся ко второй,.. то есть, точно так же, как и в плоской катушке с намоткой в один провод. И магнитное поле, возникающее в любом произвольном витке, точно так же мешает движению зарядов (тока) в следующем витке, как это происходит и в простой катушке. Более того, индуктивные бифилярки Теслы часто путают с неиндуктивными бифилярками Купера, в которых ток в произвольно выбранных двух соседних витках течёт в разных направлениях (и которые, по сути, являются статическими усилителями мощности и рождают ряд аномалий, в том числе и антигравитационные эффекты). Тогда же рождается параллельный вопрос, - если намотка в два провода улучшает параметры катушки, то почему бы ни намотать в три, четыре... провода, т.е. сделать трифилярную, квадрофилярную и т.д. катушку, и не увеличить этот положительный эффект?


Отгадка приходит, как ни странно, с русским переводом самого патента. Всё дело в разнице потенциалов в двух соседних витках. Тесла подробно исследовал процесс индукции и самоиндукции, а так же потери, возникающие в катушках. Он выяснил, что если очень сильно повысить ёмкость катушки, то для данной частоты тока, понижается сопротивление в витках и эффект самоиндукции стремительно падает. Подробнее об этих соотношениях читайте в патенте.

Здесь на рисунке: верхняя кривая, - это величина, запасаемой энергии в бифилярной катушке Теслы, а нижняя кривая, - величина энергии в обычной плоской катушке, намотанной в один провод (опыт проведён в условиях резонанса).

Также многие не догадываются, что катушка эта разрабатывалась Теслой исключительно для условий резонанса (последовательный LС-контур, резонанс напряжений), и в обычном виде он её не использовал (точнее - использовал, но об этом, как нибудь в другой раз). В резонансе на концах индуктивности (катушки) появляется потенциал гораздо более мощный, чем внешний управляющий сигнал контура (подаваемое напряжение). Но снять напрямую его от туда нельзя. При подключении нагрузки соотношение L и C резонансного контура нарушается (уменьшается индуктивность) и система выходит из резонанса. Сам Тесла (в свой ранний творческий период) и не ставил такой цели. Поэтому, название патента очень хорошо отражает суть изобретения.


В более поздний период Тесла, конечно же, возжелал отобрать эту колоссальную, появляющуюся в катушке мощность (энергию свободных вибраций). Здесь нам на руку играет тот факт, что катушка индуктивная. Т.е. её можно использовать в качестве одной из обмоток трансформатора. Если сделать трансформатор с асимметричной взаимоиндукцией первичной и вторичной обмотки, то можно на вторичную повесить нагрузку и наслаждаться халявой. Если нагрузка имеет статический характер (например, лампочка), то всё на порядок упрощается, - в этом случае, даже трансформатор не обязателен. Главное - всё точно рассчитать. А теперь, собственно, сам патент:

Тому, кого это может касаться.

Да будет известно, что я, Никола Тесла, гражданин США, проживающий в Нью-Йорке изобрёл полезное усовершенствование в катушках для электромагнитов и других аппаратов, которое ниже описано в сопровождении рисунков. В электромеханических аппаратах и системах переменного тока самоиндукционные катушки или проводники могут во многих случаях работать с потерями, что известно, как промышленная эффективность, и что приносит вред в различных аспектах. Эффект самоиндукции упомянутый выше, может быть нейтрализован ёмкостью тока определённой степени в соответствии с самоиндуктивностью и частотой тока. Это достигается использованием конденсаторов, собранных и применяемых как отдельный инструмент.

Моё это изобретение имеет целью изготовить катушки совершенными и избежать вовлечение конденсаторов, которые дорогие, громоздкие и труднорегулируемые. Я заявляю, что в термин "катушка" я включаю понятия соленоиды или любые проводники различные части которых находятся во взаимоотношениях друг с другом и фактически повышают самоиндукцию.

Я выяснил, что в каждой катушке существуют определённые взаимоотношения между её самоиндукцией и ёмкостью, что позволяет току данной частоты и потенциала проходить через неё с омическим сопротивлением (DL: здесь Тесла имеет в виду исчезновение реактивного сопротивления) или, другими словами, как если она работает без самоиндукции. Это происходит в результате взаимоотношений между характером тока и самоиндукцией и ёмкостью катушки, т.е. количество последнего достаточно для нейтрализации самоиндукции для данной частоты. Известно, что чем выше частота или разность потенциалов тока, тем меньше ёмкость требуется для нейтрализации самоиндукции, поэтому в любой катушке, особенно небольшой ёмкости, можно достичь поставленных целей, если добиться нужных условий.

В обычных катушках разность потенциалов между витками или спиралями очень маленькая, поэтому пока они во взаимодействии с конденсаторами, они несут очень небольшую ёмкость и взаимоотношения между самоиндукцией и ёмкостью не такие, как при обычном состоянии, удовлетворяющем рассмотренным требованиям где ёмкость очень мала относительно самоиндукции.

Для достижения цели увеличения ёмкости любой катушки, я наматываю её таким образом, чтобы обеспечить наибольшую разность потенциалов между соседними витками, а поскольку энергия хранящаяся в катушке (считаем, как в конденсаторе) пропорциональна квадрату разности потенциалов между витками, то становится понятно, что я могу таким образом, посредством определённого расположения витков, достичь увеличение ёмкости.

Я изобразил в приложении чертёж, в соответствии с которым осуществил это изобретение.

Рис.1 - схема катушки, намотанной обычным способом. Рис.2 - схема катушки намотанной согласно изобретения.

Пусть -А- на Рис.1 обозначает любую катушку спиралей или витков, из которых она намотана и которые изолированы друг от друга. Предположим, что концы этой катушки показывают разность потенциалов 100 В и что она содержит 1000 витков. Тогда очевидно, что существует разность потенциалов в одну десятую вольта между двумя любыми смежными точками на соседних витках.

Если теперь, как показано на Рис. 2, проводник -В- намотан параллельно проводнику -А- и изолирован от него, а конец -А- будет соединён с началом проводника -В-, тогда длина собранных вместе проводников будет такая же и число витков тоже самое (1000). И тогда разность потенциалов между любыми двумя точками проводников -А- и -В- будет 50 В, а т.к. ёмкостный эффект пропорционален квадрату этой разности, то энергия скопившаяся в катушке будет теперь в 250000 раз больше!

Следуя этому принципу теперь я могу намотать любое количество катушек, не только описанным выше путём, но любым другим известным способом но так, чтобы обеспечить такую разность потенциалов между соседними витками, которая обеспечит необходимую ёмкость чтобы нейтрализовать самоиндукцию для любого тока, который может иметь место. Емкость полученная таким образом имеет дополнительное преимущество в том, что распределяется равномерно, что является наиболее важным в большинстве случаев. И как результат, оба параметра, - эффективность и экономия, легче достигаются тогда, если размер катушек, разность потенциалов и частота тока увеличиваются.

Катушки, состоящие из проводников в изоляторе и намотанные виток к витку и соединённые последовательно не являются новыми, и я не уделяю особого внимания для их описания. Однако, на что я обращаю внимание это то, что намотки другими способами могут привести к другим результатам.

Применяя моё изобретение, специалисты в этой области должны хорошо понимать зависимость между понятиями ёмкость, самоиндукция, частота и разность потенциалов тока. Также как и понимать какая ёмкость достигается и какая намотка должна иметь место для каждого конкретного случая.

Я заявляю в своём изобретении:

1. Катушка для электрического аппарата, состоит из витков, которые образуют часть цепи и между которыми существует разность потенциалов, достаточная для обеспечения ёмкости в катушке способной нейтрализовать самоиндукцию, как было описано.

2. Катушка, состоящая их изолированных проводников, соединённых последовательно имеет такую разность потенциалов, чтобы создать в целой катушке достаточную ёмкость для нейтрализации её самоиндукции.

Патент этот я выбрал по нескольким причинам. Очень многие, не понимая сути изобретения, часто бросают реплику "попробуй использовать бифилярки Теслы, - получишь хороший прирост КПД в своих устройствах". Причём, люди эти, даже отдалённо не предполагают, почему, собственно, такой способ намотки, вдруг, делает катушку более эффективной.

Ведь, если приглядеться, то становится понятно, что ток направлен всегда в одну сторону (например, по часовой стрелке) во всех витках, - и чётных, относящихся к одной намотке, и не чётных, относящихся ко второй,.. то есть, точно так же, как и в плоской катушке с намоткой в один провод. И магнитное поле, возникающее в любом произвольном витке, точно так же мешает движению зарядов (тока) в следующем витке, как это происходит и в простой катушке. Более того, индуктивные бифилярки Теслы часто путают с неиндуктивными бифилярками Купера, в которых ток в произвольно выбранных двух соседних витках течёт в разных направлениях (и которые, по сути, являются статическими усилителями мощности и рождают ряд аномалий, в том числе и антигравитационные эффекты). Тогда же рождается параллельный вопрос, - если намотка в два провода улучшает параметры катушки, то почему бы ни намотать в три, четыре... провода, т.е. сделать трифилярную, квадрофилярную и т.д. катушку, и не увеличить этот положительный эффект?


Отгадка приходит, как ни странно, с русским переводом самого патента. Всё дело в разнице потенциалов в двух соседних витках. Тесла подробно исследовал процесс индукции и самоиндукции, а так же потери, возникающие в катушках. Он выяснил, что если очень сильно повысить ёмкость катушки, то для данной частоты тока, понижается сопротивление в витках и эффект самоиндукции стремительно падает. Подробнее об этих соотношениях читайте в патенте.

Здесь на рисунке: верхняя кривая, - это величина, запасаемой энергии в бифилярной катушке Теслы, а нижняя кривая, - величина энергии в обычной плоской катушке, намотанной в один провод (опыт проведён в условиях резонанса).

Также многие не догадываются, что катушка эта разрабатывалась Теслой исключительно для условий резонанса (последовательный LС-контур, резонанс напряжений), и в обычном виде он её не использовал (точнее - использовал, но об этом, как нибудь в другой раз). В резонансе на концах индуктивности (катушки) появляется потенциал гораздо более мощный, чем внешний управляющий сигнал контура (подаваемое напряжение). Но снять напрямую его от туда нельзя. При подключении нагрузки соотношение L и C резонансного контура нарушается (уменьшается индуктивность) и система выходит из резонанса. Сам Тесла (в свой ранний творческий период) и не ставил такой цели. Поэтому, название патента очень хорошо отражает суть изобретения.


В более поздний период Тесла, конечно же, возжелал отобрать эту колоссальную, появляющуюся в катушке мощность (энергию свободных вибраций). Здесь нам на руку играет тот факт, что катушка индуктивная. Т.е. её можно использовать в качестве одной из обмоток трансформатора. Если сделать трансформатор с асимметричной взаимоиндукцией первичной и вторичной обмотки, то можно на вторичную повесить нагрузку и наслаждаться халявой. Если нагрузка имеет статический характер (например, лампочка), то всё на порядок упрощается, - в этом случае, даже трансформатор не обязателен. Главное - всё точно рассчитать. А теперь, собственно, сам патент:

Тому, кого это может касаться.

Да будет известно, что я, Никола Тесла, гражданин США, проживающий в Нью-Йорке изобрёл полезное усовершенствование в катушках для электромагнитов и других аппаратов, которое ниже описано в сопровождении рисунков. В электромеханических аппаратах и системах переменного тока самоиндукционные катушки или проводники могут во многих случаях работать с потерями, что известно, как промышленная эффективность, и что приносит вред в различных аспектах. Эффект самоиндукции упомянутый выше, может быть нейтрализован ёмкостью тока определённой степени в соответствии с самоиндуктивностью и частотой тока. Это достигается использованием конденсаторов, собранных и применяемых как отдельный инструмент.

Моё это изобретение имеет целью изготовить катушки совершенными и избежать вовлечение конденсаторов, которые дорогие, громоздкие и труднорегулируемые. Я заявляю, что в термин "катушка" я включаю понятия соленоиды или любые проводники различные части которых находятся во взаимоотношениях друг с другом и фактически повышают самоиндукцию.

Я выяснил, что в каждой катушке существуют определённые взаимоотношения между её самоиндукцией и ёмкостью, что позволяет току данной частоты и потенциала проходить через неё с омическим сопротивлением (DL: здесь Тесла имеет в виду исчезновение реактивного сопротивления) или, другими словами, как если она работает без самоиндукции. Это происходит в результате взаимоотношений между характером тока и самоиндукцией и ёмкостью катушки, т.е. количество последнего достаточно для нейтрализации самоиндукции для данной частоты. Известно, что чем выше частота или разность потенциалов тока, тем меньше ёмкость требуется для нейтрализации самоиндукции, поэтому в любой катушке, особенно небольшой ёмкости, можно достичь поставленных целей, если добиться нужных условий.

В обычных катушках разность потенциалов между витками или спиралями очень маленькая, поэтому пока они во взаимодействии с конденсаторами, они несут очень небольшую ёмкость и взаимоотношения между самоиндукцией и ёмкостью не такие, как при обычном состоянии, удовлетворяющем рассмотренным требованиям где ёмкость очень мала относительно самоиндукции.

Для достижения цели увеличения ёмкости любой катушки, я наматываю её таким образом, чтобы обеспечить наибольшую разность потенциалов между соседними витками, а поскольку энергия хранящаяся в катушке (считаем, как в конденсаторе) пропорциональна квадрату разности потенциалов между витками, то становится понятно, что я могу таким образом, посредством определённого расположения витков, достичь увеличение ёмкости.

Я изобразил в приложении чертёж, в соответствии с которым осуществил это изобретение.

Рис.1 - схема катушки, намотанной обычным способом. Рис.2 - схема катушки намотанной согласно изобретения.

Пусть -А- на Рис.1 обозначает любую катушку спиралей или витков, из которых она намотана и которые изолированы друг от друга. Предположим, что концы этой катушки показывают разность потенциалов 100 В и что она содержит 1000 витков. Тогда очевидно, что существует разность потенциалов в одну десятую вольта между двумя любыми смежными точками на соседних витках.

Если теперь, как показано на Рис. 2, проводник -В- намотан параллельно проводнику -А- и изолирован от него, а конец -А- будет соединён с началом проводника -В-, тогда длина собранных вместе проводников будет такая же и число витков тоже самое (1000). И тогда разность потенциалов между любыми двумя точками проводников -А- и -В- будет 50 В, а т.к. ёмкостный эффект пропорционален квадрату этой разности, то энергия скопившаяся в катушке будет теперь в 250000 раз больше!

Следуя этому принципу теперь я могу намотать любое количество катушек, не только описанным выше путём, но любым другим известным способом но так, чтобы обеспечить такую разность потенциалов между соседними витками, которая обеспечит необходимую ёмкость чтобы нейтрализовать самоиндукцию для любого тока, который может иметь место. Емкость полученная таким образом имеет дополнительное преимущество в том, что распределяется равномерно, что является наиболее важным в большинстве случаев. И как результат, оба параметра, - эффективность и экономия, легче достигаются тогда, если размер катушек, разность потенциалов и частота тока увеличиваются.

Катушки, состоящие из проводников в изоляторе и намотанные виток к витку и соединённые последовательно не являются новыми, и я не уделяю особого внимания для их описания. Однако, на что я обращаю внимание это то, что намотки другими способами могут привести к другим результатам.

Применяя моё изобретение, специалисты в этой области должны хорошо понимать зависимость между понятиями ёмкость, самоиндукция, частота и разность потенциалов тока. Также как и понимать какая ёмкость достигается и какая намотка должна иметь место для каждого конкретного случая.

Я заявляю в своём изобретении:

1. Катушка для электрического аппарата, состоит из витков, которые образуют часть цепи и между которыми существует разность потенциалов, достаточная для обеспечения ёмкости в катушке способной нейтрализовать самоиндукцию, как было описано.

2. Катушка, состоящая их изолированных проводников, соединённых последовательно имеет такую разность потенциалов, чтобы создать в целой катушке достаточную ёмкость для нейтрализации её самоиндукции.

Союз Советских

Социалистических

Республик

Гооударствеиый комитет

II0 делам изобретеиий и открытий (53) УДК 621. 18. .44(088.8) M.Ê. Чиркова, Л.Е. Брискина, В.П. Козин, И.А. Архипов. и В.И. Березин (72) Авторы изобретения (71) Заявитель (54) СПОСОБ ИЗГОТОВЛЕНИЯ ПЛОСКИХ СПИРАЛЬНЫХ

КАТУШЕК ИНДУКТИВНОСТИ

Изобретение относится к способам изготовления катушек индуктивности, в. частности к изготовлению малогабаритных высокочастотных катушек индуктивности, и может быть использовано в электротехнике.

Известен способ изготовления плоских катушек индуктивности, включающий.операции намотки провода и скрепление витков клеем. Изготовление катушек проводят в приспособлении, со- (стоящем из двух параллельных плоскостей — дисков, между которыми навивается изолированный провод в ви15 де плоской спирали Архимеда. После намотки витки спирали смазывают клеем через отверстия в верхнем диске, и катушку просушивают. После сушки ограничительные диски освобождаются от фиксации и отделяются друг от друга. Спираль индуктивности остается на верхнем диске и снимается при легком поддевании лезвием(1

Недостатками укаэанного способа являются невысокая добротность и большая собственная емкость катушек индуктивности, обусловленные тем, что при таком способе скрепления витков пространство между ними заполнено клеем, диэлектрическая проницаемость которого достаточно велика, плохая повторяемость электрических параметров, обусловленная тем, что клей между витками при таком способе скрепления расположен неравномерным слоем; сложность технологии изготовления.

Наиболее близким к предложенному по технической сущности является способ изготовления катушек индуктивности, включающий намотку прово.да с пластмассовой, например, полиэтиленовой, изоляцией и скрепление витков друг с другом путем нагрева катушек до температуры плавления изоляции. Для получения катушек с шагом, а также для улучшения электри936059

55 ческих характеристик катушек индуктивности на высокой частоте в процессе намотки подают материал, идентичный изоляции, располагая его между витками, и нагревают до температуры плавления, скрепляя витки (2).

Недостатками указанного способа являются невысокая добротность и большая собственная емкость катушек, обусловленные наличием между витками материала изоляции, диэлектрическан проницаемость которого значительно больше чем воздуха, сложная технология изготовления, так как при плавлении изоляции провода и материала, служащего для создания шага, происходит сдвиг провода, который приводит к плохой повторяемости параметров и низкой точности изготовления катушек, следовательно, требуются дополнительные приспособления и операции для удержания прово в требуемом положении, невозможность использования простейшего способа подгонки индуктивности путем отма-, тывания витков, так как это приводит к нарушению целостности конструкции, ограниченность применения способа, так как при этом используется провод только в пластмассовой изоляции.

Цель изобретения - улучшение электрических характеристик на высокой частоте и повышение производительности.

Пост а влениая цель дости гает ся тем, что термопластичный материал помещают параллельно плоскости намотки, намотку ведут двумя проводами, при скреплении витков прикладывают усилие перпендикулярно плоскости намотки в сторону термопластич ного материала, а после охлаждения катушки один провод удаляют.

На фиг. 1 изображена оправка с намотанной плоско-спиральной катушкой индуктивности, разрез; на фиг. 2 — плоско-спиральная катушка индуктивности, намотанная одновременно двумя проводами: технологическим и рабочим с шагом без технологического провода.

Способ осуществляется следующим образом.

Намотка спирали производится на намоточном станке рядовой намотки в оправке, состоящей из направляющей оси 1 и двух съемных плоскостей - дисков 2 и 3. Два проводарабочий 4 и технологический 5 — пропускаются через канавку в диске 2, который закрепляется на оси 1, на диск 2 накладывается заготовка 6 из полиамидной пленки ПК-4. Ограничительный диск 3 закрепляется на оси

1 таким образом, чтобы между дисками 2 и 3 был зазор, величина которого определяется диаметром наматываемого провода. Затем производится намотка спирали. Далее оправку с намотанной спиралью помещают в струбцину с подогревом, и под нагрузкой производят кратковременный нагрев до температуры оплавления, осуществляя тем самым скрепление витков спирали с пленкой. Затем катушку охлаждают. При использовании провода в изоляции температура плавления подложки должна быть ниже температуры плавления изоляции.

Использование предложенного cпособа изготовления плоско-спиральных катушек индуктивности позволяет улучшить электрические характеристики катушек индуктивности на высокой частоте и повышение производительности.

Формула изобретения

Способ изготовления плоских спиральных катушек индуктивности, включающий намотку провода, скрепление витков термопластичным материалом, нагретым до температуры плавления, и охлаждение катушки,. о т л и ч а ю шийся тем, что, с целью улучшения электрических характеристик и повышения производительности, термопластичный материал помещают параллельно плоскости намотки, намотку ведут двумя проводами, при скреплении витков прикладывают усилие перпендикулярно плоскости намотки в сторону термопластичного материала, а после охлаждения катуш,ки один провод.удаляют.