Как появилась жизнь на Земле. Секретные материалы ученых. Как на самом деле зародилась жизнь на Земле

Земля сформировалась, вероятно, 4,5-5 млрд. лет назад из гигантского облака космической пыли. частицы которой спрессовались в раскаленный шар. Из него в атмосферу выделялся водяной пар, а из атмосферы на медленно остывавшую Землю в течение миллионов лет в виде дождей выпадала вода. В углублениях земной поверхности образовался доисторический Океан. В нем примерно 3,8 млрд. лег назад зародилась первоначальная жизнь.

Есть несколько теорий о происхождении жизни на Земле. Например, одна из давних гипотез гласит, что она занесена на Землю из космоса, но неоспоримых доказательств этого нет. Кроме того, та жизнь, которую мы знаем, удивительно приспособлена для существования именно в земных условиях, поэтому если она и возникла вне Земли, то на планете земного типа. Большинство же современных ученых полагают, что жизнь зародилась на Земле, в ее морях. Но как произошла сама планета и как на ней появились моря?

По этому поводу существует одна широко признанная теория. В соответствии с ней Земля образовалась из облаков космической пыли, содержащей все известные в природе химические элементы, которые спрессовались в шар. Горячий водяной пар вырывался с поверхности этого раскаленного докрасна шара, окутывая его сплошным облачным покровом, Водяной пар в облаках медленно охлаждался и превращался в воду, которая выпадала в виде обильных непрерывных дождей на еще раскаленную, пылающую Землю. На ее поверхности она снова превращалась в водяной пар и возвращалась в атмосферу. За миллионы лет Земля постепенно потеряла так много тепла, что ее жидкая поверхность, остывая, начала твердеть. Так образовалась земная кора.

Прошли миллионы лет, и температура поверхности Земли еще больше понизилась. Ливневые воды перестали испаряться и стали стекать в огромные лужи. Так началось воздействие воды на земную поверхность. А потом из-за понижения температуры произошел настоящий потоп. Вода, которая до этого испарялась в атмосферу и превратилась в ее составную часть, беспрерывно низвергалась на Землю, С громом и молниями обрушивались из облаков мощные ливни. Мало-помалу в самых глубоких впадинах земной поверхности скапливалась вода, которая уже не успевала совсем испариться. Ее было так много, что постепенно на планете образовался доисторический Океан. Молнии рассекали небо. Но никто этого не видел. На Земле еще не было жизни. Непрерывный ливень начал размывать горы. Вода стекала с них шумными ручьями и бурными реками. За миллионы лет водные потоки глубоко разъели земную поверхность и кое-где появились долины. В атмосфере уменьшалось содержание воды, а на поверхности планеты ее скапливалось все больше. Сплошной облачный покров становился тоньше, пока в один прекрасный день Земли не коснулся первый луч солнца. Непрерывный дождь кончился. Большую часть суши покрыл доисторический Океан. Из ее верхних слоев вода вымывала огромное количество растворимых минералов и солей, которые попадали в море. Вода из него непрерывно испарялась, образуя облака, а соли оседали, и с течением времени происходило постепенное засоление морской воды. По-видимому, при каких-то существовавших в древности условиях образовались вещества, из которых возникли особые кристаллические формы. Они росли, как и все кристаллы, и давали начало новым кристаллам, которые присоединяли к себе все новые вещества. Солнечный свет и, возможно, очень сильные электрические разряды служили в этом процессе источником энергии. Может быть, из таких элементов зародились первые обитатели Земли - прокариоты, организмы без оформленного ядра, похожие на современных бактерий. Они были анаэробами, то есть не использовали для дыхания свободный кислород, которого тогда еще не было в атмосфере. Источником пищи для них служили органические соединения, возникшие на еще безжизненной Земле в результате воздействия ультрафиолетового излучения Солнца, грозовых разрядов и тепла, образующегося при извержении вулканов. Жизнь существовала тогда в тонкой бактериальной пленке на дне водоемов и во влажных местах. Эту эру развития жизни называют архейской. Из бактерий, а возможно, и совершенно независимым путем, возникли и крошечные одноклеточные организмы - древнейшие простейшие животные.

Они и сейчас составляют основу жизни в морях и пресноводных водоемах. Они так малы, что их можно увидеть лишь с помощью микроскопа. В капле воды из небольшого пруда их тысячи и тысячи. С этих простейших одноклеточных началось развитие всей животной жизни. В конце протерозоя, следующей эры после архея, 1000 - 600 млн. лет назад, уже существовала довольно богатая фауна: медузы, полипы, плоские черви, моллюски и иглокожие.

На картинке, изображены примитивные существа, обитавшие приблизительно 600 - 570 млн. лет назад в кембрийском геологическом периоде, первом периоде палеозойской эры. Мы впервые узнали о них благодаря ископаемым окаменелостям, которые обнаружили геологи, изучавшие Кембрийские горы в Великобритании. Отсюда и произошло название геологического периода истории.

От более простых по строению животных и растений, населявших море в конце протерозоя, не сохранилось следов. Можно только предполагать, что это были организмы, состоявшие только из мягких тканей, которые после смерти быстро полностью разлагались. Настоящих рыб в кембрии еще не было, но уже жили кишечнополостные, губки, ныне вымершие археоциаты, плоские и многощетинковые черви, улитки, каракатицы, раки и трилобиты. Последние походили на раков длиной до 10 см. Для того времени это были настоящие гиганты, крупнее всех других существ. (На суше в то время жизни еще не было.) В конце кембрия, очевидно, уже появились первые хордовые, похожие на современных ланцетников. В течение последующих миллионов лет животные постепенно изменялись, и в следующем геологическом периоде - силуре, начавшемся 500 - 400 млн. лет назад, кроме многочисленных трилобитов на морском дне появились новые обитатели - морские скорпионы.

В толще вод силурийского моря пассивно дрейфовали одноклеточные организмы и медузы. А по морскому дну ползали ракообразные и трилобиты,черви и животные, защищенные раковинами, например двустворчатые моллюски и улитки. Плавать могли лишь очень немногие из них. Даже первые позвоночные, внешне уже напоминавшие рыб, обитали на морском дне. В силуре в морях и пресных водах появились и странные «рыбы» - без челюстей и парных плавников. До наших дней дожили их родственники - миксины и миноги. В силурийский период уже появились первые настоящие рыбы. У этих похожих на акул пловцов было обтекаемое, покрытое панцирем тело, плавники, рот с подвижной челюстью, напоминавшей клюв и усаженной острыми зубами. Примерно 450 млн. лет назад, в силуре, появились первые позвоночные животные - рыбы. Тело одной из древнейших - цефаласписа - было покрыто панцирной чешуей, а голова - костным панцирем. По-видимому, цефаласпис был плохим пловцом. За миллионы лет в том же геологическом периоде развились два больших класса рыб - хрящевые и костные (двоякодышащие, кистеперые и лучеперые). И хрящевым, то есть имеющим хрящевой скелет, относятся акулы и скаты. В отличие от них, скелет костных рыб частично или целиком состоит из костной ткани. К костным относятся почти все хорошо знакомые нам промысловые рыбы: сельдь, камбала, треска и скумбрия, карп, щука и многие другие. Всего на Земле в наши дни насчитывается 20 тысяч видов рыб, и населяют они не только моря, но и другие водоемы.

400 млн. лет назад силур сменился девонским геологическим периодом, который длился около 60 млн. лет. Тогда на суше появились первые растения - лишайники, которыми зарастали увлажненные берега водоемов. В течение девона от них произошли другие формы, в том числе и первые высшие растения - папоротники и хвощи. Кроме того, если прежде все животные дышали лишь кислородом, растворенным в воде, то теперь некоторые из них научились извлекать его из воздуха. Эти первые сухопутные животные - тысяченожки, скорпионы и бескрылые примитивные насекомые, вероятно, обитали поблизости от воды. Предком всех сухопутных позвоночных животных была кистеперая рыба с похожими на лапы грудными и брюшными плавниками. Постепенно у кистеперых рыб развились настоящие верхние и нижние конечности, и с течением времени появились земноводные (амфибии) и пресмыкающиеся (рептилии).

Откуда нам известно, как выглядели древние животные?

Все те изменения, которые претерпевала Земля с момента образования ее коры, изучает историческая геология. Ученые определяют возраст геологических слоев по окаменелостям - остаткам древних животных и растений, так как у каждой эпохи были свои характерные представители флоры и фауны. Изучением окаменелостей занимается палеонтология. Палеонтологи исследуют ископаемые остатки древних организмов и восстанавливают внешний облик вымерших животных. Когда живые организмы погибали в доисторическом Океане, они опускались на дно, где их покрывал ил или песок, который приносили реки. Миллионы лет илистые грунты вместе с погребенными под ними останками уплотнялись, превращаясь в камень. Мягкие ткани животных полностью разлагались но отпечаток оставался. Твердые раковины моллюсков или панцири ракообразных часто сохранялись неповрежденными. За время исторического развития Земли неоднократно морское дно под действием мощных сил и расплавленных недр планеты выталкивалось на большую высоту и становилось частью суши. Вкрапленные в горную породу остатки и отпечатки древних животных находят исследователи и по ним изучают геологические процессы. Слои горных пород для ученых - как страницы книги с множеством рисунков, и надо лишь правильно расшифровать «текст», чтобы понять, как развивалась жизнь на планете. Слои песка и ила с окаменелостями откладывались друг на друга миллионы лет. Так они и спрессовались: более древние слои - ниже, более поздние - выше. Накапливая сведения о том, в каких слоях преобладают те или иные виды окаменелостей, ученые научились определять, к какому геологическому времени они относятся. После этого уже довольно просто по найденным окаменелостям определить возраст геологической породы, в которой они были обнаружены.

Большой каньон реки Колорадо в американском штате Аризона - одно из немногих мест, где сохранилась огромная, удобная для «чтения» каменная летопись жизни на планете. Здесь река прорезала толщу осадочных пород - известняков, песчаников и сланцев - на глубину до 1800 м. Река образовала каньон, то есть глубокую долину с очень крутыми склонами и узким дном, размыв дно древнего моря. Оно поднималось очень медленно и равномерно. Горообразования, которое всегда сопровождается гигантскими сдвигами и разломами горных пород, здесь не было. Поэтому почти не изменилась последовательность залегания геологических пород. Изучив окаменелости слоев крутого склона, можно проследить за всеми изменениями, происходившими с животным миром древнего моря за сотни миллионов лет.

Материал подготовлен при использовании книги "Рыбы" издательство Слово

Доктор геолого-минералогических наук И. А. РЕЗАНОВ

Говоря языком литературы, жизнь родилась, «когда Земля вскрикнула». Но чтобы Земля вскрикнула, оказалось недостаточно опыта профессора Челленджера и мало воображения Конан-Дойля, заставившего своего героя бурить скважину. Если говорить научным языком, то я полагаю, что мы обязаны жизнью двум катастрофам космического масштаба. По-моему, лишь один источник информации способен достоверно рассказать, какие события привели к возникновению жизни,- это «каменная летопись» планеты.

Неспециалисту трудно поверить, что радиоактивный анализ позволяет не только точно датировать эпизоды геологического сценария даже такой непредставимой давности, но и воссоздать картины физических процессов того времени. Как же из мертвой материи возникла жизнь?

Согласно новейшим геологическим данным, в первые 600 миллионов лет существования Земли (4,0-3,9 млрд лет назад) на планете царили такие экстремальные условия, что жизнь была невозможна. Плотная атмосфера состояла в основном из водорода с примесью гелия. Жерла многочисленных вулканов извергали углекислоту, метан, аммиак, сероводород и другие газы. Анализ камней-патриархов показал, что давление доходило до шести тысяч атмосфер, поверхность планеты нагревалась до 600 °С, то есть в этом адском пекле было жарче, чем сейчас на Венере, где жизнь не обнаружена.

А вот породы помоложе, родившиеся 3,8 миллиарда лет назад и позже, формировались уже в условиях, близких к современным. Эти страницы каменной летописи свидетельствуют, что к тому времени плотная и сильно нагретая водородная атмосфера покинула планету. Понять, чем это спровоцировано, удалось, только дождавшись возвращения космических аппаратов с Луны. Изучая пробы лунного грунта, селенологи в этом космическом приложении к каменной летописи Земли прочитали, что 3,9 миллиарда лет назад в Солнечной системе произошла гигантская катастрофа. Лунные моря — кратерообразные воронки диаметром до 1200 километров — именно в то время были выбиты при бомбардировке гигантскими астероидами. Космические тела, бомбя Луну, дали ей мощный импульс тепла, которое разогрело ее недра до плавления. С тех пор на поверхности Луны выделяются два типа рельефа: светлые «материки» и темные «моря», залитые расплавленными базальтами.

Наиболее вероятная причина катастрофы, полагали академик В. Г. Фесенков и многие другие астрономы,- это взрыв планеты, орбита которой совпадала с поясом астероидов, расположенным между орбитами Марса и Юпитера.

Если мерить масштабами Солнечной системы, то Луна недалеко от Земли. Следовательно, и на Землю обрушился шквал астероидов и метеоритов. Все знают, что звук передается благодаря колебаниям молекул. Если на Луне и тогда атмосферы не было, то все эти катаклизмы вершились в жуткой тишине (для человека, конечно, если бы он там мог присутствовать). Но что за циклопическую симфонию услышал бы свидетель над нашей планетой? Пожалуй, слабо сказать вслед за Конан-Дойлем, что «Земля вскрикнула». Она взревела. Падая, обломки-астероиды вызвали мощные воздушные течения, и в пекле стало на 100 градусов жарче. Дополнительного тепла хватило, чтобы сорвать с Земли ее водородное одеяние. И только после этого на Земле появились подходящие условия для возникновения жизни. Как говорится, не было бы счастья, да несчастье помогло.

Получается, что катастрофа стала необходимым условием рождения жизни, но было ли этого достаточно? Нет, потому что на поверхности Земли не осталось ни атмосферы, ни гидросферы, а кора и мантия расплавились. Планету обволакивала расплавленная, вязкая гранитная кора, не пропускавшая сквозь себя газы. Газы копились в менее вязкой мантии. Лишь при давлении не менее десяти тысяч атмосфер и температуре не ниже 1000° плохо растворимые в магме газы СО, С02, Н2, СН4, NH3 прорывались сквозь кору в виде гигантских струй.

Известно, что при вулканическом извержении образуются сложные органические соединения (аминокислоты, сахара, порфирины). Так, только за одно извержение вулкана Тятя на Курильских островах в 1973 г. в пепле накопилось 200 тонн сложной органики. Сколько же ее образовалось на планете после срыва первичной водородной атмосферы с Земли, когда то и дело фонтанировали гигантские газовые струи с интенсивностью, в тысячи раз превышающей силу нынешних вулканических извержений? В ту пору в жерлах газовых вулканов ежегодно синтезировались миллионы тонн органических соединений. За геологически короткое время (первые миллионы лет) на поверхности планеты испекся слоеный пирог толщиной в несколько десятков метров из чередующихся прослоек пепла и органических соединений.

Обилие органики было второй необходимой причиной для рождения жизни на Земле. Но и этого было недостаточно. Чего же еще?

Более ста лет назад знаменитый французский естествоиспытатель Луи Пастер обнаружил, что органические соединения в составе растений и животных оптически асимметричны — они вращают плоскость поляризации падающего на них света. Все аминокислоты, входящие в состав животных и растений, вращают плоскость поляризации влево, а все сахара — вправо. Если мы синтезируем такие же по химическому составу соединения, то в каждом из них будет равное количество лево- и правовращающих молекул.

Теперь представьте себе, что среда с левыми и правыми молекулами перешла в состояние только с левыми или только с правыми молекулами. Такую среду специалисты называют хирально (от греческого слова «хейра» — рука) упорядоченной. Самовоспроизведение живого (биопоэз — по определению Д. Бернала) могло возникнуть и поддерживаться только в такой среде.

Советский ученый Л. Л. Морозов доказал, что переход к хиральной упорядоченности мог произойти не эволюционно, а только при резком фазовом изменении. Академик В. И. Гольданский назвал этот переход хиральной катастрофой. Все-таки ученые отличаются от остальных людей не только знаниями. Все привыкли считать, что катастрофа — это нечто ужасающее, а физики назвали катастрофой явление, благодаря которому зародилась жизнь и, в конечном счете, они сами.

Как же возникли условия для фазовой катастрофы, вызвавшей хиральный переход?

Наиболее важным было то, что нижние слои нарастающего пепло-органического пирога жарились на разогретой до 600 земной коре, а верхние остывали до температуры космоса, то есть абсолютного нуля. Перепад температуры достигал 1000°. Ясно, что низ пирога пригорал, то есть органические молекулы плавились под действием высокой температуры и даже полностью разрушались, а верх пирога оставался до поры до времени непропеченным, так как органические молекулы замораживались. Конечно, газы и, воз- можно, пары воды, которые просачивались из земной коры, меняли химический состав органических соединений. Газы несли с собой тепло, из-за чего граница плавления органического слоя смещалась вверх и вниз.

При очень низких давлениях атмосферы вода была на земной поверхности лишь в виде пара и льда. Когда же давление достигало так называемой тройной точки воды (0,006 атмосферы), вода впервые смогла находиться в виде жидкости.

Конечно, лишь экспериментально можно доказать, что именно вызвало хиральный переход: земные или космические причины. Но так или иначе в какой-то момент хирально упорядоченные молекулы (а именно — левовращающие аминокислоты и правовращающие сахара) оказались более устойчивыми и начался неостановимый рост их количества — хиральный переход.

Каменная летопись повествует и о том, что тогда на Земле не было ни гор, ни впадин. Полурасплавленная гранитная кора представляла собой поверхность столь же ровную, как уровень современного океана. Однако в пределах этой равнины все же были понижения из-за неравномерного распределения масс внутри . Эти понижения сыграли чрезвычайно важную роль. Дело в том, что плоскодонные впадины поперечником в сотни и даже тысячи километров и глубиной не более ста метров, вероятно, и стали колыбелью жизни. Ведь в них стекала вода, собиравшаяся на поверхности планеты. Вода разбавляла хиральные органические соединения в пепловом слое. Постепенно менялся химический состав соединения, стабилизировалась температура. Переход от неживого к живому, начавшийся в безводных условиях, продолжался уже в водной среде.

Таков ли сюжет зарождения жизни ? Вероятнее всего, что да. В геологическом разрезе Исуа (Западная Гренландия), возраст которого 3,8 миллиарда лет, найдены бензино- и нефтеподобные соединения с изотопным соотношением С12/С13, свойственным углероду фотосинтетического происхождения. Если биологическая природа углеродистых соединений из разреза Исуа подтвердится, то получится, что весь сюжет — от возникновения хиральной органики до появления клетки, способной к фотосинтезу и размножению,- был разыгран лишь за сто миллионов лет.

Космическое по масштабам явление, предсказанное на кончике пера советскими учеными, ждет своего экспериментального подтверждения, чтобы перейти из разряда дерзких гипотез в почетный разряд теорий.

Жизнь – результат эволюции или творения? Эта дилемма беспокоит умы не одного поколения ученых. Нескончаемые споры на этот счет порождают всё более любопытные теории.

Порядок против хаоса

Второй закон термодинамики (энтропия) гласит, что все элементы космоса движутся от порядка к хаосу. На это обращает внимание ученый из НАСА Роберт Дестроу, который утверждает, что «вселенная останавливается как часы». Креационисты опираются на закон энтропии, чтобы доказать несостоятельность точки зрения эволюционистов, которая предполагает самопроизвольное развитие и усложнение всех элементов окружающего мира.

Теолог XIX столетия Уильям Пели провел следующую аналогию. Мы знаем, что карманные часы не возникли сами собой, а были сделаны человеком: из этого следует, что такая сложная структура как человеческий организм тоже результат творения.

Чарльз Дарвин противопоставил этой точке зрения свою теорию о силе естественного отбора, которая, опираясь на наследственную изменчивость в процессе длительной эволюции, способна сформировать сложнейшие органические структуры.

«Но из неживой материи не могла появиться органическая жизнь», – указывали креационисты на уязвимое место теории Дарвина.

Лишь сравнительно недавно исследования химиков Стэнли Миллера и Гарольда Юри позволили получить аргументы в защиту теории эволюции.

Эксперимент американских ученых подтвердил гипотезу о том, что на примитивной Земле существовали условия, способствовавшие возникновению биологических молекул из неорганических веществ. Согласно их выводам, молекулы образовались в атмосфере в результате обычных химических реакций, а затем, попав с дождем в океан, привели к зарождению первой клетки.

Сколько лет Земле?

В 2010 году американский биохимик Даглас Теобальд попытался доказать, что у всего живого на Земле есть общий предок. Он математически проанализировал последовательности наиболее распространенных белков и выявил, что выбранные молекулы есть и у человека, и у мухи, и у растений, и у бактерий. Вероятность общего предка по расчетам ученого составила 102860.

Согласно теории эволюции, процесс перехода от простейших организмов к высшим занимает миллиарды лет. Но креационисты заявляют, что это невозможно, так как возраст Земли не превышает нескольких десятков тысяч лет.

Все виды животных и растений, по их мнению, появились практически одновременно и независимо друг от друга – в том виде, в котором мы можем наблюдать их сейчас.

Современная наука, опираясь на данные радиоизотопного анализа земных образцов и метеоритного вещества определяет возраст Земли цифрой 4,54 млрд. лет. Однако, как показали некоторые эксперименты, такой метод датирования может иметь очень серьезные погрешности.

В 1968 году американский «Журнал географических исследований» опубликовал данные радиоизотопного анализа вулканических пород, образовавшихся на Гавайях в результате извержения вулкана, произошедшего в 1800 году. Возраст пород был определен диапазоном от 22 млн. до 2 млрд. лет.

Много вопросов оставляет и радиоуглеродный анализ, с помощью которого производят датировку биологических останков. Такой метод позволяет установить предельный возраст образцов в 60 000 лет с 10 периодами полураспада углерода-14. Но как объяснить то, что углерод-14 находят в образцах «юрской древесины»? «Только тем, что возраст Земли необоснованно состарили», – настаивают креационисты.

Палеонтолог Гарольд Коффин отмечает, что образование осадочных пород происходило неравномерно и по ним сложно узнать истинный возраст нашей планеты. К примеру, окаменелости ископаемых деревьев близ Джоггинса (Канада), вертикально пронизывающие слой земли на 3 и более метров, свидетельствуют о том, что растения были погребены под толщей пород за очень короткий промежуток времени в результате катастрофических событий.

Стремительная эволюция

Если допустить, что Земля не такая древняя, возможно ли, чтобы эволюция «вписалась» в более сжатые временные рамки? Команда американских биологов под руководством Ричарда Ленски в 1988 году решила провести долговременный эксперимент, моделирующий в лабораторных условиях эволюционный процесс на примере бактерии кишечной палочки.

12 колоний бактерий поместили в идентичную среду, где в качестве источника питания присутствовала только глюкоза, а также цитрат, который при наличии кислорода не мог усваиваться бактериями.

Ученые наблюдали за кишечной палочкой в течение 20 лет, за это время сменилось более 44 тыс. поколений бактерий. Кроме типичных для всех колоний изменений в размерах бактерий ученые обнаружили интересную особенность, присущую лишь одной колонии: в ней бактерии где-то между 31-й и 32-й тысячей поколений проявили способность усваивать цитрат.

В 1971 году итальянские ученые завезли 5 особей стенных ящериц на остров Под Маркару, находящийся в Адриатическом море. В отличие от прежнего места обитания, на острове было мало насекомых, которыми питались ящерицы, но много травы. Результаты своего эксперимента ученые проверили лишь в 2004 году. Что же они увидели?

Ящерицы приспособились к непривычной среде: их популяция достигла 5000 особей, но главное, у пресмыкающихся изменились внешний вид и строение внутренних органов. В частности, увеличилась голова и сила укуса, чтобы справляться с большими листьями, а также появился новый отдел в пищеварительном тракте – камера брожения, позволявшая кишечнику ящериц переваривать жесткую целлюлозу. Так, всего за 33 года стенные ящерицы из хищников превратились в травоядных!

Слабое звено

Если внутривидовые изменения наука способна подтвердить экспериментально, то возможность появления в ходе эволюции нового вида пока остается исключительно в теории. Сторонники креационизма не только указывают эволюционистам на отсутствие промежуточных форм живых организмов, но и пытаются научно подтвердить несостоятельность эволюционной теории происхождения видов.

Испанскому генетику Сванте Паабо удалось извлечь ДНК из фрагмента позвонка неандертальца, жившего предположительно около 50 000 лет назад. Сравнительный анализ ДНК современного человека и неандертальца показал, что последний не является нашим предком.

Генетик из США Алан Уилсон при помощи метода митохондриальной ДНК смог предположительно сказать, когда на Земле появилась «Ева». Его исследования дали возраст в 150-200 тыс. лет. Японский ученый Сатоси Хораи приводит похожие данные. По его мнению, современный человек появился в Африке около 200 тыс. лет назад, а оттуда переселился в Евразию, где довольно быстро вытеснил неандертальца.

Опираясь на данные палеонтологической летописи, биолог Джонатан Уэллс замечает: «Совершенно ясно, что на уровне царств, типов и классов происхождение от общих предков посредством модификации нельзя считать непреложным фактом».

Российский математик и философ Юлий Шредер отмечает, что мы не знаем как в известных нам масштабах измерить длительность шести дней, за которые Бог создал мир, ведь и само время было сотворено за эти же дни. «Порядок творения вполне соответствует представлениям современной космологии», – отмечает ученый.

Доктор биологических наук Юрий Симаков и вовсе считает человека продуктом генной инженерии. Он предполагает, что эксперимент был проведен на стыке двух видов – неандертальца и Homo sapiens. По словам биолога, налицо «сложное и намеренное вмешательство разума, который должен на порядок превосходить наш».

Сотрудники зала эволюции, который находится в зоопарке Сент-Луиса решили в шутливой форме примирить две теории. На входе они повесили объявление, гласящее: «Здесь вовсе не утверждается, что мир живого не мог быть создан сразу – просто он выглядит так, будто появился в результате долгой эволюции».

Наука

По подсчетам ученых, жизнь на земле зародилась около 3 миллиардов лет назад : за это время простейшие организмы развились в сложные формы жизни. Однако для ученых до сих пор остается загадкой, как зародилась жизнь на планете, и они выдвинули несколько теорий, объясняющих этот феномен:

1. Электрические искры

В ходе знаменитого эксперимента Миллера-Юри (Miller-Urey Experiment), ученые доказали, что молнии могли способствовать появлению основных веществ, необходимых для зарождения жизни: электрические искры образовывают аминокислоты в атмосфере, состоящей из огромного количества воды, метана, аммиака и водорода. Затем из аминокислот развились более сложные формы жизни. Эту теорию несколько изменили после того, как исследователи выяснили, что атмосфера планеты миллиарды лет назад была бедна водородом. Ученые предположили, что метан, аммиак и водород содержались в вулканических облаках, насыщенных электрическими зарядами.


2. Глина

Химик Александр Грэм Кэрнс-Смит (Alexander Graham Cairns-Smith) из университета Глазго, Шотландия, выдвинул теорию о том, что на заре зарождения жизни в глине содержалось много органических компонентов, находящихся недалеко друг от друга, и что глина способствовала организации этих веществ в структуры, подобные нашим генам.

ДНК хранит информацию о структуре молекул, и генетические последовательности ДНК указывает на то, как аминокислоты должны построиться в белки. Кэрнс-Смит предполагает, что кристаллы глины способствовали организации органических молекул в упорядоченные структуры, а позднее этим стали заниматься сами молекулы, "без помощи" глины.


3. Глубоководные жерла

Согласно этой теории, жизнь зародилась в подводных гидротермальных жерлах, выбрасывающих молекулы, богатые водородом. На их каменистой поверхности эти молекулы могли собраться вместе и стать минеральными катализаторами для реакций, которые и привели к зарождению жизни. Даже сейчас у таких гидротермальных жерл, богатых химической и термальной энергией, обитает довольно большое количество живых существ.


4. Ледяное начало

3 миллиарда лет назад Солнце светило далеко не так ярко, как сейчас, и, соответственно, тепла до Земли доходило меньше. Вполне возможно, что поверхность земли покрывал толстый слой льда, который защищал хрупкие органические вещества , находящиеся в воде под ним, от ультрафиолетовых лучей и космического воздействия. К тому же, холод помог молекулам дольше просуществовать, в результате чего стали возможны реакции, приведшие к зарождению жизни.


5. Мир РНК

ДНК нужны белки для формирования, а белкам для образования нужна ДНК. Как могли они сформироваться друг без друга? Ученые предположили, что в этом процессе участвовала РНК, которая, так же, как и ДНК, хранит информацию. Из РНК, соответственно, образовались белки и ДНК , которые заменили ее в виду своей большей эффективности.

Возник другой вопрос: "Как появилась РНК?". Некоторые считают, что она самопроизвольно появилась на планете, а другие отрицают такую возможность.


6. "Простая" теория

Некоторые ученые предположили, что жизнь развилась не из сложных молекул вроде РНК, а из простых, которые взаимодействовали друг с другом. Они, возможно, находились в простых оболочках, сходных с клеточными мембранами. В результате взаимодействии этих простых молекул появились сложные , которые эффективнее вступали в реакции.


7. Панспермия

В конце концов, жизнь могла зародиться не на нашей планете, а принесена из космоса : в науке этот феномен называется панспермией. У этой теории есть вполне прочная основа: из-за космического воздействия от Марса периодически отделяются обломки камней, которые долетают и до Земли. После того, как ученые обнаружили марсианские метеориты на нашей планете, они предположили, что эти объекты и принесли с собой бактерии. Если верить им, то все мы марсиане . Другие исследователи предположили, что жизнь принесли кометы из других звездных систем. Даже если они правы, то человечество будет искать ответ на другой вопрос: "А как жизнь зародилась в космосе?".


Жизнь появилась на нашей планете спустя примерно полмиллиарда лет после возникновения Земли, то есть около 4 млрд лет назад: именно тогда зародился первый общий предок всех живых существ. Он представлял собой одну-единственную клетку, генетический код которой включал в себя несколько сотен генов. У этой клетки было все необходимое для жизни и дальнейшего развития: механизмы, отвечающие за синтез белков, воспроизводство наследственной информации и выработку рибонуклеиновой кислоты (РНК), которая также ответственна за кодирование генетических данных.

Ученые понимали, что первый общий предок всех живых существ зародился из так называемого первичного бульона — аминокислот, возникших из соединений воды с химическими элементами, которыми были наполнены водоемы молодой Земли.

Возможность формирования аминокислот из смеси химических элементов была доказана в результате эксперимента Миллера — Юри, о котором «Газета.Ru» несколько лет назад. В ходе опыта Стэнли Миллер смоделировал в пробирках атмосферные условия Земли около 4 млрд лет назад, заполнив их смесью газов — метана, аммиака, углерода и монооксида углерода, — добавив туда воды и пропуская через пробирки электрический ток, который должен был производить эффект разрядов молний.

В результате взаимодействия химических веществ Миллер получил в пробирках пять аминокислот — основных строительных блоков всех белков.

Спустя полвека, в 2008 году, исследователи провели повторный анализ содержимого пробирок, которые Миллер сохранил в неприкосновенности, и выяснили, что на самом деле смесь продуктов содержала вовсе не 5 аминокислот, а 22, просто автор эксперимента не смог идентифицировать их несколько десятилетий назад.

После этого перед учеными встал вопрос о том, какие из трех основных молекул, содержащихся во всех живых организмах (ДНК, РНК или белки), стали следующей ступенью формирования жизни. Сложность этого вопроса заключается в том, что процесс образования каждой из трех молекул зависит от двух других и не может быть осуществлен в ее отсутствие.

Таким образом, ученые должны были либо признать возможность формирования сразу двух классов молекул в результате случайной удачной комбинации аминокислот, либо согласиться с тем, что структура их сложных взаимосвязей образовалась спонтанно, уже после возникновения всех трех классов.

Проблема была разрешена в 1980-х годах, когда Томас Чек и Сидней Олтмен открыли способность РНК существовать полностью автономно, выступая ускорителем химических реакций и синтезируя новые, аналогичные себе РНК. Это открытие привело к появлению «гипотезы мира РНК», впервые высказанной микробиологом Карлом Везе в 1968 году и окончательно сформулированной биохимиком, лауреатом Нобелевской премии по химии Уолтером Гилбертом в 1986 году. Суть этой теории заключается в том, что основой жизни признаются молекулы рибонуклеиновой кислоты, которые в процессе самовоспроизведения могли накапливать мутации. Эти мутации в конечном итоге привели к способности рибонуклеиновой кислоты создавать белки. Белковые соединения являются более эффективным катализатором, чем РНК, и именно поэтому создавшие их мутации закрепились в процессе естественного отбора.

Одновременно с этим сформировались и «хранилища» генетической информации — ДНК. Рибонуклеиновые кислоты сохранились как посредник между ДНК и белками, выполняя множество различных функций:

они хранят информацию о последовательности аминокислот в белках, переносят аминокислоты в места синтеза пептидных связей, принимают участие в регулировании степени активности тех или иных генов.

На данный момент у ученых нет однозначных доказательств того, что подобный синтез РНК в результате случайных соединений аминокислот возможен, хотя определенные подтверждения этой теории есть: так, в 1975 году ученые Манфред Сампер и Рудигер Льюс продемонстрировали, что при определенных условиях РНК может спонтанно возникнуть в смеси, содержащей только нуклеотиды и репликазу, а в 2009 году исследователи из Университета Манчестера доказали, что уридин и цитидин — составляющие части рибонуклеиновой кислоты — могли синтезироваться в условиях ранней Земли. Тем не менее некоторые исследователи продолжают критиковать «гипотезу мира РНК» из-за чрезвычайно низкой вероятности спонтанного возникновения рибонуклеиновой кислоты, обладающей каталитическими свойствами.

Ученые Ричард Вульфенден и Чарльз Картер из Университета Северной Каролины предложили свою версию формирования жизни из первичного «строительного материала». Они полагают, что аминокислоты, сформировавшиеся из набора существовавших на Земле химических элементов, стали базой для образования не рибонуклеиновых кислот, а других, более простых веществ — белковых ферментов, которые сделали возможным появление РНК. Исследователи опубликовали результаты своей работы в журнале PNAS .

Ричард Вульфенден проанализировал физические свойства 20 аминокислот и пришел к выводу, что аминокислоты могли самостоятельно обеспечивать процесс формирования структуры полноценного белка. Эти белки, в свою очередь, являлись ферментами — молекулами, ускоряющими химические реакции в организме. Чарльз Картер продолжил работу своего коллеги, показав на примере фермента под названием аминоацил-тРНК-синтетаза то огромное значение, которое ферменты могли играть для дальнейшего развития основ жизни: эти

белковые молекулы способны распознавать транспортные рибонуклеиновые кислоты, обеспечивать их соответствие участкам генетического кода и тем самым организовывать верную передачу генетической информации последующим поколениям.

По мнению авторов исследования, им удалось найти то самое «недостающее звено», которое было промежуточным этапом между образованием аминокислот из первичных химических элементов и складыванием из них сложных рибонуклеиновых кислот. Процесс образования белковых молекул достаточно прост по сравнению с образованием РНК, а его реалистичность была доказана Вульфенденом на примере изучения 20 аминокислот.

Выводы ученых дают ответ и еще на один вопрос, в течение долгого времени волновавший исследователей, а именно: когда произошло «разделение труда» между белками и нуклеиновыми кислотами, к которым относятся ДНК и РНК. Если теория Вульфендена и Картера верна, то можно смело утверждать: белки и нуклеиновые кислоты «поделили» между собой основные функции на заре возникновения жизни, а именно около 4 млрд лет назад.